- •6.Устройства вертикальной планировки и условия их применения.
- •12.Водопроводные сети и их характеристика.
- •Сооружения естественной и искусственной очистки
- •Биологическая очистка сточных вод
- •Сооружения и аппараты биологической очистки
- •Проектирование тепловых сетей в районах вечной мерзлоты
- •Транспортирование газа на большие расстояния[править | править вики-текст]
- •Применение газа[править | править вики-текст]
- •Классификация сэс[править | править вики-текст]
- •Состав сэс[править | править вики-текст]
- •Содержание
- •Классификация электрических сетей[править | править вики-текст]
- •Назначение, область применения
- •Масштабные признаки, размеры сети
- •Род тока
- •Озеленение и благоустройство населённого пункта.
- •Озеленение и благоустройство улично-дорожной сети населенных пунктов
Биологическая очистка сточных вод
Метод очистки сточных вод, основанный на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов.
Есть несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды и аэротенки.
В биофильтрах сточные воды пропускаются через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой. Благодаря этой пленке интенсивно протекают процессы биологического окисления. Именно она служит действующим началом в биофильтрах.
В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.
Аэротенки - огромные резервуары из железобетона. Здесь очищающее начало — активный ил из бактерий и микроскопических животных. Все эти живые существа бурно развиваются в аэротенках, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего в сооружение потоком подаваемого воздуха. Бактерии склеиваются в хлопья и выделяют ферменты, минерализующие органические загрязнения. Ил с хлопьями быстро оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, не слипающиеся в хлопья, омолаживают бактериальную массу ила.
Сточные воды перед биологической очисткой подвергают механической, а после нее для удаления болезнетворных бактерий и химической очистке, хлорированию жидким хлором или хлорной известью. Для дезинфекции используют также другие физико-химические приемы (ультразвук, электролиз, озонирование и др.)
Биологический метод дает большие результаты при очистке коммунально-бытовых стоков. Он применяется также и при очистке отходов предприятий нефтеперерабатывающей, целлюлозно-бумажной промышленности, производстве искусственного волокна.
Сооружения и аппараты биологической очистки
Биологическая очистка может осуществляться как в естественных, так и в искусственных условиях. К сооружениям естественной очистки относятся:
- Фильтрующие колодцы, используемые при расходе 1 куб.м в сутки и менее, и фильтрующие кассеты — при расходе 0,5-6 куб.м в сутки.
- Поля подземной фильтрации — при расходе до 15 куб.м в сутки и более.
- Поля фильтрации — при расходе 1400 куб.м в сутки и менее.
В этих сооружениях фильтрующей загрузкой являются естественные грунты, используемые непосредственно на месте (пески, супеси, легкие суглинки).
- Фильтрующие траншеи, песчано-гравийные фильтры, применяемые при расходе 15 куб.м в сутки и более. Оросительная и дренажная сеть этих сооружений положена в слое искусственной фильтрующей загрузки из привозного грунта. Их устраивают при наличии водонепроницаемых или слабофильтрующих грунтов.
- Фильтрующие кассеты с пропускной способностью 0,5-6 куб.м в сутки, применяемые в слабофильтрующих грунтах (суглинках) при коэффициенте фильтрации не менее 0,1 куб.м в сутки.
- Циркуляционные окислительные каналы (ЦОК) — при расходе 100-1400 куб.м в сутки.
- Биологические пруды с естественной или искусственной аэрацией — при расходе 1400 куб.м в сутки.
При круглогодичной работе очистной станции сооружения естественной очистки рекомендуется использовать, если удовлетворяются следующие условия: среднегодовая температура воздуха в районе расположения очистной станции не менее 10 град.С; глубина грунтовых вод не менее 1 м от поверхности земли; наличие свободных площадей вблизи малых объектов. При сезонной работе станции (только в летний период) первое условие, касающееся среднегодовой температуры, исключается.
Однако почвенные методы не всегда приемлемы из-за неблагоприятных санитарных, почвенно-грунтовых, климатических, гидрогеологических условий. В связи с этим возникает необходимость в применении сооружений искусственной биологической очистки.
К сооружениям, в которых биологическая очистка протекает в искусственно созданных условиях, относятся:
- Биофильтры с загрузкой из пеностекла или пластмассы.
- Биодисковые фильтры.
- Биофильтраторы.
- Биореакторы с биобарабанами.
- Блок биореакторов с затопленной ершовой загрузкой.
- Аэрационные установки, работающие по методу полного окисления (продленной аэрации).
- Аэрационные установки с аэробной стабилизацией избыточного активного ила.
Физико-химический этап[править | править вики-текст]
Данные методы используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.
В настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются:
флотация;
сорбция;
центрифугирование;
ионообменная и электрохимическая очистка;
гиперфильтрация;
нейтрализация;
экстракция;
эвапорация;
выпаривание, испарение и кристаллизация.
Важным этапом при очистке сточных вод является механическое обезвоживание осадка. На данный момент существует несколько технологий обезвоживания — с помощью камерных фильтр-прессов, с помощью ленточных прессов и с помощью центрифуг (декантеров). Каждая технология имеет свои плюсы и минусы (занимаемая площадь, энергопотребление, стоимость и т. п.). При обезвоживании обычно используют реагент (флокулянт) для увеличения эффективности обезвоживания. В настоящее время широкое применение получает использование центрифуг для обезвоживания. Качество разделения жидкой и твердой фракции самое высокое из вышеупомянутых технологий.
Дезинфекция сточных вод[править | править вики-текст]
Для окончательного обеззараживания сточных вод предназначенных для сброса на рельеф местности или в водоем применяют установки ультрафиолетового облучения.
Для обеззараживания биологически очищенных сточных вод, наряду с ультрафиолетовым облучением, которое используется, как правило, на очистных сооружениях крупных городов, применяется также обработка хлором в течение 30 минут.
Хлор уже давно используется в качестве основного обеззараживающего реагента практически на всех очистных сооружениях в городах России. Поскольку хлор довольно токсичен и представляет опасность, очистные предприятия многих городов России уже активно рассматривают другие реагенты для обеззараживания сточных вод, такие как гипохлорит, дезавид (сам реагент и его компоненты не входят в список разрешённых к применению в целях обеззараживания. В ЕС основной компонент запрещен с 09.02.2010) и озонирование.
Системы теплоснабжения
В общем случае системой теплоснабжения называется совокупность источников теплоты, устройств для транспорта теплоты (тепловых сетей) и потребителей теплоты. Основное назначение систем теплоснабжения - обеспечение потребителей необходимым количеством теплоты требуемых параметров. Системы теплоснабжения [3] подразделяются на централизованные и децентрализованные. В децентрализованных системах источник теплоты и теплоприемники потребителей совмещены в одном агрегате или находятся так близко друг от друга, что не требуется специальных устройств для транспорта теплоты (тепловой сети). В централизованной системе теплоснабжения источник и потребители значительно удалены друг от друга, поэтому передача теплоты производится по тепловым сетям. Системы децентрализованного теплоснабжения подразделяются на индивидуальные и местные. В индивидуальных системах теплоснабжение каждого помещения обеспечивается от отдельного собственного источника (печное или поквартирное отопление). В местных системах отопление всех помещений здания обеспечивается от отдельного общего источника (домовой котельной). Централизованное теплоснабжение можно подразделить: на групповое - теплоснабжение от одного источника группы зданий; районное - теплоснабжение от одного источника района города; городское - теплоснабжение от одного источника нескольких районов города или даже города в целом; межгородское - теплоснабжение от одного источника нескольких городов. Централизованное теплоснабжение представляет собой совокупность следующих операций: подготовка теплоносителя, транспорт теплоносителя; использование теплоносителя. Подготовка теплоносителя производится в теплоподготовительных установках на теплоэлектроцентралях, а также в городских, районных, квартальных или промышленных котельных. Транспортируется теплоноситель по тепловым сетям, а используется в теплоприемниках потребителей. Помимо изложенного системы теплоснабжения классифицируют также по следующим признакам:
- по виду транспортируемого теплоносителя - паровые, водяные, газовые, воздушные;
- по числу параллельно проложенных трубопроводов - одно-, двух - и многотрубные;
- по способу присоединения систем горячего водоснабжения к тепловым сетям - закрытые и открытые;
- по виду потребителя теплоты - коммунально - бытовые и технологические. При выборе вида теплоносителя необходимо учитывать его санитарногигиенические, технико - экономические и эксплуатационные показатели.
Источники теплоснабжения Теплоснабжение - снабжение теплом жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых (отопление, вентиляция, горячее водоснабжение) и технологических нужд потребителей. Различают местное и централизованное теплоснабжение. Система местного теплоснабжения обслуживает одно или несколько зданий, система централизованного — жилой или промышленный район. В России наибольшее значение приобрело централизованное теплоснабжение (в связи с этим термин "теплоснабжение" чаще всего употребляется применительно к системам централизованного теплоснабжения). Его основные преимущества перед местным теплоснабжением — значительное снижение расхода топлива и эксплуатационных затрат (например, за счёт автоматизации котельных установок и повышения их кпд); возможность использования низкосортного топлива; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населённых мест. Основными источниками теплоты в системах теплоснабжения являются: 1) паровые, водогрейные и пароводогрейные котельные различных мощ-ностей и назначений; 2) теплоэлектроцентрали (ТЭЦ) – электростанции, которые отпускают внешнему потребителю как электрическую, так и тепловую энергию; 3) теплоутилизационные установки, использующие вторичные энерго- ресурсы (ВЭР) промышленных предприятий. Распределение выработки тепловой энергии между источниками теплоты: ТЭЦ………………………………………………………………….40% Промышленные котельные………………………………………..25% Районные, групповые, квартальные и домовые котельные……..33% Теплоутилизационные установки………………………………….2% 100% Основные потребители тепловой энергии: 1) системы отопления жилых, общественных и производственных зданий; 2) системы вентиляции общественных и производственных зданий в зимний период, т. е., когда необходимо подогревать воздух, нагнетаемый в вентилируемые помещения; 3) системы кондиционирования воздуха в летний период в том случае, если для выработки холода применяют холодильные установки, использующие тепловую энергию (абсорбционные или инжекционные); 4) системы горячего водоснабжения; 5) потребляющие тепловую энергию технологические процессы промышлен ных предприятий.
Трасса и способы прокладки тепловых сетей
Тепловые сети по способу прокладки делятся на подземные и надземные (воздушные). Подземная прокладка трубопроводов тепловых сетей выполняется: в каналах непроходного и полупроходного поперечного сечения, в туннелях (проходных каналах) высотой 2 м и более, в общих коллекторах для совместной прокладки трубопроводов и кабелей различного назначения, во внутриквартальных коллекторах и технических подпольях и коридорах, бесканально. Надземная прокладка трубопроводов выполняется на отдельно стоящих мачтах или низких опорах, на эстакадах со сплошным пролетным строением, на мачтах с подвеской труб на тягах (вантовая конструкция) и на кронштейнах. К особой группе конструкций относятся специальные сооружения: мостовые переходы, подводные переходы, тоннельные переходы и переходы в футлярах. Эти сооружения, как правило, проектируются и строятся по отдельным проектам с привлечением специализированных организаций. Выбор способа и конструкций прокладки трубопроводов обуславливается многими факторами, основными из которых являются: диаметр трубопроводов, требования эксплуатационной надежности теплопроводов, экономичность конструкций и способ выполнения строительства. При размещении трассы тепловых сетей в районах существующей или перспективной городской застройки по архитектурным соображениям обычно принимается подземная прокладка трубопроводов. В строительстве подземных тепловых сетей наибольшее применение получила прокладка трубопроводов в непроходных и полупроходных каналах. Прокладка тепловых сетей на территории вновь строящихся районов может быть выполнена в коллекторах, сооружаемых в жилых кварталах и микрорайонах для размещения инженерных коммуникаций, обслуживающих данную застройку [ 2 ], а также в технических подпольях и технических коридорах зданий. Прокладка распределительных тепловых сетей диаметром до Dу 300 мм в технических коридорах или подвалах зданий высотой в свету не менее 2 м допускается при условии создания возможности их нормальной эксплуатации (удобство обслуживания и ремонта оборудования). Трубопроводы должны укладываться на бетонные опоры или кронштейны, а компенсация температурных удлинений осуществляться за счет П-образных гнутых компенсаторов и угловых участков труб. Способ надземной (воздушной) прокладки тепловых сетей имеет ограниченное применение в условиях сложившейся и перспективной застройки города из-за архитектурно-планировочных требований, предъявляемых к сооружениям такого вида. Надземная прокладка трубопроводов широко применяется на территории промышленных зон и отдельных предприятий, где они размещаются на эстакадах и мачтах совместно с производственными паропроводами и технологическими трубопроводами, а также на кронштейнах, укрепляемых на стенах зданий. Значительное преимущество имеет надземный способ прокладки по сравнению с подземным при строительстве тепловых сетей на территориях с высоким уровнем стояния грунтовых вод, а также при просадочных грунтах и в районах вечной мерзлоты. Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002. При Катковых и шариковых опорах уклон не должен превышать
(1)где г — радиус катка или шарика, см.
