Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
иот нооооооооооооо.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
124.1 Кб
Скачать

Биологическая очистка сточных вод

Метод очистки сточных вод, основанный на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов.

Есть несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды и аэротенки.

В биофильтрах сточные воды пропускаются через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой. Благодаря этой пленке интенсивно протекают процессы биологического окисления. Именно она служит действующим началом в биофильтрах.

В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.

Аэротенки - огромные резервуары из железобетона. Здесь очищающее начало — активный ил из бактерий и микроскопических животных. Все эти живые существа бурно развиваются в аэротенках, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего в сооружение потоком подаваемого воздуха. Бактерии склеиваются в хлопья и выделяют ферменты, минерализующие органические загрязнения. Ил с хлопьями быстро оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, не слипающиеся в хлопья, омолаживают бактериальную массу ила.

Сточные воды перед биологической очисткой подвергают механической, а после нее для удаления болезнетворных бактерий и химической очистке, хлорированию жидким хлором или хлорной известью. Для дезинфекции используют также другие физико-химические приемы (ультразвук, электролиз, озонирование и др.)

Биологический метод дает большие результаты при очистке коммунально-бытовых стоков. Он применяется также и при очистке отходов предприятий нефтеперерабатывающей, целлюлозно-бумажной промышленности, производстве искусственного волокна.

Сооружения и аппараты биологической очистки

Биологическая очистка может осуществляться как в естественных, так и в искусственных условиях. К сооружениям естественной очистки относятся:

- Фильтрующие колодцы, используемые при расходе 1 куб.м в сутки и менее, и фильтрующие кассеты — при расходе 0,5-6 куб.м в сутки.

- Поля подземной фильтрации — при расходе до 15 куб.м в сутки и более.

- Поля фильтрации — при расходе 1400 куб.м в сутки и менее.

В этих сооружениях фильтрующей загрузкой являются естественные грунты, используемые непосредственно на месте (пески, супеси, легкие суглинки).

- Фильтрующие траншеи, песчано-гравийные фильтры, применяемые при расходе 15 куб.м в сутки и более. Оросительная и дренажная сеть этих сооружений положена в слое искусственной фильтрующей загрузки из привозного грунта. Их устраивают при наличии водонепроницаемых или слабофильтрующих грунтов.

- Фильтрующие кассеты с пропускной способностью 0,5-6 куб.м в сутки, применяемые в слабофильтрующих грунтах (суглинках) при коэффициенте фильтрации не менее 0,1 куб.м в сутки.

- Циркуляционные окислительные каналы (ЦОК) — при расходе 100-1400 куб.м в сутки.

- Биологические пруды с естественной или искусственной аэрацией — при расходе 1400 куб.м в сутки.

При круглогодичной работе очистной станции сооружения естественной очистки рекомендуется использовать, если удовлетворяются следующие условия: среднегодовая температура воздуха в районе расположения очистной станции не менее 10 град.С; глубина грунтовых вод не менее 1 м от поверхности земли; наличие свободных площадей вблизи малых объектов. При сезонной работе станции (только в летний период) первое условие, касающееся среднегодовой температуры, исключается.

Однако почвенные методы не всегда приемлемы из-за неблагоприятных санитарных, почвенно-грунтовых, климатических, гидрогеологических условий. В связи с этим возникает необходимость в применении сооружений искусственной биологической очистки.

К сооружениям, в которых биологическая очистка протекает в искусственно созданных условиях, относятся:

- Биофильтры с загрузкой из пеностекла или пластмассы.

- Биодисковые фильтры.

- Биофильтраторы.

- Биореакторы с биобарабанами.

- Блок биореакторов с затопленной ершовой загрузкой.

- Аэрационные установки, работающие по методу полного окисления (продленной аэрации).

- Аэрационные установки с аэробной стабилизацией избыточного активного ила.

Физико-химический этап[править | править вики-текст]

Данные методы используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.

В настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются:

флотация;

сорбция;

центрифугирование;

ионообменная и электрохимическая очистка;

гиперфильтрация;

нейтрализация;

экстракция;

эвапорация;

выпаривание, испарение и кристаллизация.

Важным этапом при очистке сточных вод является механическое обезвоживание осадка. На данный момент существует несколько технологий обезвоживания — с помощью камерных фильтр-прессов, с помощью ленточных прессов и с помощью центрифуг (декантеров). Каждая технология имеет свои плюсы и минусы (занимаемая площадь, энергопотребление, стоимость и т. п.). При обезвоживании обычно используют реагент (флокулянт) для увеличения эффективности обезвоживания. В настоящее время широкое применение получает использование центрифуг для обезвоживания. Качество разделения жидкой и твердой фракции самое высокое из вышеупомянутых технологий.

Дезинфекция сточных вод[править | править вики-текст]

Для окончательного обеззараживания сточных вод предназначенных для сброса на рельеф местности или в водоем применяют установки ультрафиолетового облучения.

Для обеззараживания биологически очищенных сточных вод, наряду с ультрафиолетовым облучением, которое используется, как правило, на очистных сооружениях крупных городов, применяется также обработка хлором в течение 30 минут.

Хлор уже давно используется в качестве основного обеззараживающего реагента практически на всех очистных сооружениях в городах России. Поскольку хлор довольно токсичен и представляет опасность, очистные предприятия многих городов России уже активно рассматривают другие реагенты для обеззараживания сточных вод, такие как гипохлорит, дезавид (сам реагент и его компоненты не входят в список разрешённых к применению в целях обеззараживания. В ЕС основной компонент запрещен с 09.02.2010) и озонирование.

  1. Системы теплоснабжения

В общем случае системой теплоснабжения называется совокупность источников теплоты, устройств для транспорта теплоты (тепловых сетей) и потребителей теплоты. Основное назначение систем теплоснабжения - обеспечение потребителей необходимым количеством теплоты требуемых параметров. Системы теплоснабжения [3] подразделяются на централизованные и децентрализованные. В децентрализованных системах источник теплоты и теплоприемники потребителей совмещены в одном агрегате или находятся так близко друг от друга, что не требуется специальных устройств для транспорта теплоты (тепловой сети). В централизованной системе теплоснабжения источник и потребители значительно удалены друг от друга, поэтому передача теплоты производится по тепловым сетям. Системы децентрализованного теплоснабжения подразделяются на индивидуальные и местные. В индивидуальных системах теплоснабжение каждого помещения обеспечивается от отдельного собственного источника (печное или поквартирное отопление). В местных системах отопление всех помещений здания обеспечивается от отдельного общего источника (домовой котельной). Централизованное теплоснабжение можно подразделить: на групповое - теплоснабжение от одного источника группы зданий; районное - теплоснабжение от одного источника района города; городское - теплоснабжение от одного источника нескольких районов города или даже города в целом; межгородское - теплоснабжение от одного источника нескольких городов. Централизованное теплоснабжение представляет собой совокупность следующих операций: подготовка теплоносителя, транспорт теплоносителя; использование теплоносителя. Подготовка теплоносителя производится в теплоподготовительных установках на теплоэлектроцентралях, а также в городских, районных, квартальных или промышленных котельных. Транспортируется теплоноситель по тепловым сетям, а используется в теплоприемниках потребителей. Помимо изложенного системы теплоснабжения классифицируют также по следующим признакам:

- по виду транспортируемого теплоносителя - паровые, водяные, газовые, воздушные;

- по числу параллельно проложенных трубопроводов - одно-, двух - и многотрубные;

- по способу присоединения систем горячего водоснабжения к тепловым сетям - закрытые и открытые;

- по виду потребителя теплоты - коммунально - бытовые и технологические. При выборе вида теплоносителя необходимо учитывать его санитарно­гигиенические, технико - экономические и эксплуатационные показатели.

  1. Источники теплоснабжения Теплоснабжение - снабжение теплом жилых, общественных и промышленных зданий (сооружений) для обеспечения коммунально-бытовых (отоплениевентиляциягорячее водоснабжение) и технологических нужд потребителей. Различают местное и централизованное теплоснабжение. Система местного теплоснабжения обслуживает одно или несколько зданий, система централизованного — жилой или промышленный район. В России наибольшее значение приобрело централизованное теплоснабжение (в связи с этим термин "теплоснабжение" чаще всего употребляется применительно к системам централизованного теплоснабжения). Его основные преимущества перед местным теплоснабжением — значительное снижение расхода топлива и эксплуатационных затрат (например, за счёт автоматизации котельных установок и повышения их кпд); возможность использования низкосортного топлива; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населённых мест. Основными источниками теплоты в системах теплоснабжения являются: 1)  паровые, водогрейные и пароводогрейные котельные различных мощ-ностей и назначений; 2)  теплоэлектроцентрали (ТЭЦ) – электростанции, которые отпускают внешнему потребителю как электрическую, так и тепловую энергию; 3)  теплоутилизационные установки, использующие вторичные энерго- ресурсы (ВЭР) промышленных предприятий. Распределение выработки тепловой энергии между источниками теплоты: ТЭЦ………………………………………………………………….40% Промышленные котельные………………………………………..25% Районные, групповые, квартальные и домовые котельные……..33% Теплоутилизационные установки………………………………….2% 100% Основные потребители тепловой энергии: 1)  системы отопления жилых, общественных и производственных зданий; 2)  системы вентиляции общественных и производственных зданий в зимний период, т. е., когда необходимо подогревать воздух, нагнетаемый в вентилируемые помещения; 3)  системы кондиционирования воздуха в летний период в том случае, если для выработки холода применяют холодильные установки, использующие тепловую энергию (абсорбционные или инжекционные); 4)  системы горячего водоснабжения; 5)  потребляющие тепловую энергию технологические процессы промышлен ных предприятий.

  1. Трасса и способы прокладки тепловых сетей

Тепловые сети по способу прокладки де­лятся на подземные и надземные (воз­душные). Подземная прокладка трубопрово­дов тепловых сетей выполняется: в каналах непроходного и полупроходного поперечно­го сечения, в туннелях (проходных каналах) высотой 2 м и более, в общих коллекторах для совместной прокладки трубопроводов и кабелей различного назначения, во внутриквартальных коллекторах и технических под­польях и коридорах, бесканально. Надземная прокладка трубопроводов выполняется на отдельно стоящих мачтах или низких опорах, на эстакадах со сплошным пролетным строением, на мачтах с подвеской труб на тягах (вантовая кон­струкция) и на кронштейнах. К особой группе конструкций относятся специальные сооружения: мостовые пере­ходы, подводные переходы, тоннельные пе­реходы и переходы в футлярах. Эти сооруже­ния, как правило, проектируются и строятся по отдельным проектам с привлечением спе­циализированных организаций. Выбор способа и конструкций проклад­ки трубопроводов обуславливается многими факторами, основными из которых являют­ся: диаметр трубопроводов, требования экс­плуатационной надежности теплопроводов, экономичность конструкций и способ выпол­нения строительства. При размещении трассы тепловых сетей в районах существующей или перспективной городской застройки по архитектурным со­ображениям обычно принимается подземная прокладка трубопроводов. В строительстве подземных тепловых сетей наибольшее при­менение получила прокладка трубопроводов в непроходных и полупроходных каналах. Прокладка тепловых сетей на террито­рии вновь строящихся районов может быть выполнена в коллекторах, сооружаемых в жилых кварталах и микрорайонах для раз­мещения инженерных коммуникаций, обслу­живающих данную застройку [ 2 ], а также в технических подпольях и технических кори­дорах зданий. Прокладка распределительных тепловых сетей диаметром до Dу 300 мм в техниче­ских коридорах или подвалах зданий высо­той в свету не менее 2 м допускается при условии создания возможности их нормаль­ной эксплуатации (удобство обслуживания и ремонта оборудования). Трубопроводы должны укладываться на бетонные опоры или кронштейны, а компенсация темпера­турных удлинений осуществляться за счет П-образных гнутых компенсаторов и угло­вых участков труб. Способ надземной (воздушной) про­кладки тепловых сетей имеет ограниченное применение в условиях сложившейся и пер­спективной застройки города из-за архитек­турно-планировочных требований, предъяв­ляемых к сооружениям такого вида. Надземная прокладка трубопроводов широко применяется на территории про­мышленных зон и отдельных предприятий, где они размещаются на эстакадах и мачтах совместно с производственными паропрово­дами и технологическими трубопроводами, а также на кронштейнах, укрепляемых на стенах зданий. Значительное преимущество имеет над­земный способ прокладки по сравнению с подземным при строительстве тепловых се­тей на территориях с высоким уровнем стоя­ния грунтовых вод, а также при просадочных грунтах и в районах вечной мерзлоты. Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002. При Катковых и шариковых опорах уклон не должен превышать

(1)где г — радиус катка или шарика, см.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]