1. Электризация тел - Это сообщение телу электрического заряда различными способами, трением, соприкосновением, электростатической индукцией. Электрический заряд характеризует способность тел (элементарных частиц) к электромагнитным взаимодействиям.
1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.
2. Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды отталкиваются, а разноименные заряды притягиваются.
3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — положительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями зарядов с помощью электрометров.
Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы, в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов, положительно заряженных протонов и нейтральных частиц — нейтронов. Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.
Элементарный электрический заряд (е) — это наименьший электрический заряд, положительный или отрицательный, равный величине заряда электрона:
е = 1,6021892(46) • 10 19 Кл.
Заряженных элементарных частиц существует много, и почти все они обладают зарядом +е или -е, однако эти частицы весьма недолговечны. Они живут меньше миллионной доли секунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.
Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электронейтрален.
В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными: тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.
Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приобретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся зарядов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.
Закон кулона
На основании многочисленных опытов Кулон установил следующий закон:
Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:
|
Силы
взаимодействия подчиняются третьему
закону Ньютона:
Они
являются силами отталкивания при
одинаковых знаках зарядов и силами
притяжения при разных знаках Взаимодействие
неподвижных электрических зарядов
называют электростатическим или кулоновским взаимодействием.
Раздел электродинамики, изучающий
кулоновское взаимодействие,
называют электростатикой.
Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.
Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).
Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.
Коэффициент k в системе СИ обычно записывают в виде:
|
где
– электрическая
постоянная.
В системе СИ элементарный заряд e равен:
e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл. |
Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.
Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.
2. По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.
Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.
Для
количественного определения электрического
поля вводится силовая характеристика
напряженность
электрического поля.
Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:
|
Напряженность
электрического поля – векторная
физическая величина. Направление
вектора
в
каждой точке пространства совпадает с
направлением силы, действующей на
положительный пробный заряд.
Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином – электрическое поле
Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:
|
Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.
В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю
Е=k*|q0|/(r^2)
|
||
|
||
|
Это поле называется кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q < 0, то вектор направлен к заряду.
Для наглядного изображения электрического поля используют силовые линии. Эти линии проводят так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовой линии (рис. 1.2.1). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.
|
Рисунок 1.2.1. Силовые линии электрического поля |
Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рис. 1.2.2. Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рис. 1.2.2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.
|
Рисунок 1.2.2. Силовые линии кулоновских полей |
Кулоновское
поле точечного заряда Q удобно
записать в векторной форме. Для этого
нужно провести радиус-вектор
от
заряда Q к
точке наблюдения. Тогда
при Q > 0вектор
параллелен
а
при Q < 0 вектор
антипараллелен
Следовательно,
можно записать:
|
где r – модуль радиус-вектора .
3. Работа в электрическом поле. Потенциал
A=F*s* cosa
Eп = m*g*h
A = -(Eп2 – Eп1)
Электрический потенциал и разность потенциалов
Пусть мы имеем бесконечное равномерное электрическое поле. В точке М помещен заряд +q. Предоставленный самому себе заряд +q под действием электрических сил поля будет перемещаться в направлении поля на бесконечно большое расстояние. На это перемещение заряда будет затрачена энергия электрического поля.
Потенциалом данной точки поля называется работа, которую затрачивает электрическое поле, когда оно перемещает положительную единицу заряда из данной точки поля в бесконечно удаленную точку. Чтобы переместить заряд +q из бесконечно удаленной точки снова в точку М, внешние силы должны произвести работу А, идущую на преодоление электрических сил поля. Тогда для потенциала φ точки М получим
Если заряд, равный 1 кулону, из бесконечно удаленной точки перемещается в точку поля, потенциал которой равен 1 вольту, то при этом совершается работа в 1 джоуль. Если же в точку поля с потенциалом 10 в из бесконечно удаленной точки перемещается 15 кулонов электричества, то совершается работа 10 ·15 — 150 джоулей.
Математически эта зависимость выражается формулой
Чтобы переместить 10 кулонов электричества из точки А с потенциалом 20 в в точку В с потенциалом 15 в, поле должно совершить работу
или
Разность потенциалов двух точек поля φ1 - φ2 называется напряжением, измеряется в вольтах и обозначается буквой U. Работу сил электрического поля можно записать и так:
A = qU.
Для того чтобы заряд q переместить вдоль линий поля из одной точки однородного поля в другую, находящуюся на расстоянии l, нужно проделать работу [2]
так
как
,
то
откуда
.
Такова простейшая зависимость между напряженностью электрического поля и электрическим напряжением для однородного поля.
Расположение точек с равным потенциалом вокруг поверхности заряженного проводника зависит от формы этой поверхности. Если взять, например, заряженный металлический шар, то точки с равным потенциалом в электрическом поле, созданном шаром, будут лежать на сферической поверхности, окружающей заряженный шар. Поверхность равного потенциала, или, как ее еще называют, эквипотенциальная поверхность, служит удобным графическим способом для изображения поля. На рис. 14 представлена картина эквипотенциальных поверхностей положительно заряженного шара.
Для наглядного представления о том, как изменяется разность потенциалов в данном поле, эквипотенциальные поверхности следует чертить так, чтобы разность потенциалов между точками, лежащими на двух соседних поверхностях, была одна и та же, например равная 1 в. Первоначальную, нулевую, эквипотенциальную поверхность очертим произвольным радиусом. Остальные поверхности 1, 2, 3, 4 чертим так, чтобы разность потенциалов между точками, лежащими на данной поверхности и на соседних поверхностях, составляла 1 в. Согласно определению эквипотенциальной поверхности разность потенциалов между отдельными точками, лежащими на одной и той же поверхности, равна нулю.
Из этой фигуры видно, что по мере приближения к заряженному телу эквипотенциальные поверхности располагаются теснее друг к другу, так как потенциал точек поля быстро увеличивается, а разность потенциалов между соседними поверхностями, согласно принятому условию, остается одной и той же. И наоборот, по мере удаления от заряженного тела эквипотенциальные поверхности располагаются реже.
Электрические силовые линии перпендикулярны к эквипотенциальной поверхности в любой точке.
Сама поверхность заряженного проводника тоже представляет собой эквипотенциальную поверхность, т. е. все точки поверхности проводника имеют одинаковый потенциал. Тот же потенциал имеют все точки внутри проводника.
Если взять два проводника с различными потенциалами и соединить их металлической проволокой, то, так как между концами проволоки имеется разность потенциалов или напряжение, вдоль проволоки будет действовать электрическое поле. Свободные электроны проволоки под действием поля придут в движение в направлении возрастания потенциала, т. е. по проволоке начнет проходить электрический ток. Движение электронов будет продолжаться до тех пор, пока потенциалы проводников не станут равными, а разность потенциалов между ними не станет равной нулю.
Чтобы лучше уяснить себе это, приведем аналогию из другой области физики.
Если два сосуда с различными уровнями воды соединить снизу трубкой, то по трубке потечет вода. Движение воды будет продолжаться до тех пор, пока уровни воды в сосудах не установятся на одной высоте, а разность уровней не станет равной нулю.
Так как всякий заряженный проводник, соединенный с землей, теряет практически весь свой заряд, потенциал земли условно принимается равным нулю.
