Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мой диплом. УРА!!! 3.1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.26 Mб
Скачать

Введение

Сейчас перед геофизикой, одного из разделов физики, стоят большие задачи по изучению литосферы. Решение этой задачи невозможно без использования сейсмических методов и ЭВМ для обработки полученных результатов

Интерференционные поля, регистрируемые при исследова­ниях Земной коры, ставят перед геофизиками новые задачи: повы­шения однозначности интерпретации сейсмограмм; получения данных о структуре и физических характеристиках горных пород; прогнозирования состояния вещества в предполагаемых зонах очагов землетрясений.

Современные физические методы интерпретации волновых полей основаны на обработке сейсмограмм преломленно-отраженных волн, определении по ним геометрических и скорост­ных характеристик слоев и подробной струк­туры литосферы - локальных неоднородностей, глинистости, распределения тонко­слоистых пачек, пористости и коэффициентов затухания.

Все эти определения зависят от качества записи получаемых сигналов, которая подвергается различного рода искажениям: шумы различной природы, случайные колебания и интерферирующие с ними различные волны. Так же сложной проблемой является отделение однократно-отраженных волн на подошве и кровле пластов от межволнового фона, возникающего из за интерференцией на переходных слоях.

Физико-сейсмические методы занимают не последнее место в проблеме прогно­зирования землетрясений. Так же активно применяются при изучении глубинного строе­ния и состояния среды и поиска полезных ископаемых. Использование для решения всех задач математических методов описания сейсмических полей и расширение класса используемых волн является важным средством для достижения цели.

В этой дипломной работе используются материалы полевых наблюдений. В течение полевого сезона в радиусе 400 км от оз. Удыль было зарегистрировано 22 сейсмических события в различных азимутах. Три события были идентифицированы также сейсмическими станциями ГС РАН. Это позволило провести калибровку азимутов всех зарегистрированных землетрясений.

В настоящей работе автором получены и проанализированы инструментальные наблюдения за микросейсмическим фоном. На основе анализа и интерпретации этих данных разработан методический подход по использованию микроземлетрясений для изучения характеристик анизотропии блочных массивов горных пород с выраженным направлением тектонических нарушений.

Целью данной дипломной работы является создание физической модели анизотропии геологической среды на основе анализа амплитудно-частотных характеристик сейсмических волн, распро­страняющихся в слоистой среде.

В соответствии с поставленной целью в дипломной работе были поставлены и решены следующие задачи:

1) Инструментальные высокоточные микросейсмические наблюдения одной станцией.

2) Обработка материалов полевых наблюдений с доработкой алгоритма определения азимутов на эпицентр с использованием одной станции, с формированием банка данных и численным моделированием параметров землетрясений.

3) Построение физической модели анизотропной среды по параметрам затухания сейсмических волн и спектрам микросейсм в сопоставлении с электрической неоднородностью земной коры.

  1. ФИЗИЧЕСКИЕ МОДЕЛИ ДЕФОРМИРУЕМЫХ СРЕД НА ОСНОВЕ ОПРЕДЕЛЕНИЯ ВОЛНОВЫХ П0ЛЕЙ В СЛОИСТОМ И НЕОДНОРОДНОМ ПОЛУПРОСТРАНСТВЕ

1.1 Подходы к построению физических моделей

Важные практические подходы в сейсморазведке и сейсмологии по исследованию распространения сейсмических волн могут быть отображены в рамках следующих основных методов и их модификаций: разностного, лучевого, дифракционного и матричного. Решения задач дифракционным методом получены для сред со сложной конфигурацией границ: клина, разлома, сброса и т.д. /1/; для сильно искривленных областей большой протяженности /2/, дифракции упругих волн на объектах канонической формы /3/. Однако при этом подходе получаются сложные интегральные выражения, поэтому решения здесь строятся либо для одномерных задач или исследуются частные конкретные примеры /4/. Более общие результаты получаются с помощью других упомянутых методов, они кратко рассмотрены в следующих трех подразделах. Наиболее удобным методом является матричный, подробно разобранный в работе Стародубова /5/.