- •Хабаровск – 2015 г. Реферат
- •Содержание
- •Введение
- •1.2 Матричным методом для расчета сейсмограмм
- •1.2.1 Подхода Томсона-Хаскела и его численная реализация
- •1.2.2 Учет горизонтальной неоднородности среды
- •1.3 Распространение сейсмических волн при влиянии неидеальной упругости среды
- •1.3.1 Учет неидеальной упругости при помощи эмпирического подхода
- •1.3.2 Теория деформации, основанная на физических закономерностях о сжимаемости и деформируемости сред
- •Организация работ и размещение станции
- •Обработка данных, полученных во время экспедиции на оз. Удыль
- •Продолжение таблицы 2.3
- •2.7 Физический принцип регистрации землетрясений. Сейсмограф Голицина
- •3.3.2 Регистрация микро землетрясений магнитудой 1-3
- •3.4.2 Годограф прямой волны
- •3.5.2 Механическая модель анизотропной среды
- •3.6.2 Физическая модель на основе законов термодинамики
- •Список использованных источников
- •Приложение б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения в
- •Продолжение приложения в
- •Продолжение приложения в
- •Продолжение приложения г
3.6.2 Физическая модель на основе законов термодинамики
На рисунке 3.19 представлена спектрограмма с выделенными периодами проявления интенсивности микросейсм. На рисунке обозначены:
зона 1 – период сейсмического затишья до землетрясения;
зона 2 – период действия штормовых;
зона 3 – период микросейсмического затишья перед землетрясением;
зона 4 – спектрограмма периода проявления землетрясения;
зона 5 – область затухания штормовых микросейсм;
зоны 6, 8 – области с фрагментами спектров штормовых микросейсм;
зона 7 – период сейсмического затишья после землетрясения;
зона 9 – область квазипериодического микросейсмического шума.
Рисунок 3.19 - Спектр Y - компоненты землетрясения магнитудой М=1.8 и микросейсм до и после землетрясения (пояснения в тексте).
Данные закономерности вписываются в термодинамическую модель землетрясения, разрабатываемую на основе фазовых переходов "жидкость-газ-жидкость" /30, 31/ при различной динамике изменения температуры, давления и объема замкнутого и открытого включения.
На рисунке 3.20 представлены различные типы термодинамической системы.
На рисунке 3.20 обозначены:
А - переход жидкости в газ водонасыщенного включения при увеличении объема вмещающих пород и уменьшении давления при постоянной температуре;
Б - переход жидкости в газ при уменьшении температуры вмещающих пород и уменьшении давления водонасыщенного включения при постоянном объеме;
В - переход жидкости в газ при увеличении температуры вмещающих пород и увеличении температуры водонасыщенного включения при постоянном давлении;
Г - переход жидкости в газ при уменьшении давления вмещающих пород и уменьшении давления вследствие диффузии из области водонасыщенного включения при постоянной температуре.
Рисунок 3.20 – Термическая модель слабых землетрясений (пояснения .в тексте)
Данная модель описывает все динамические условия вскипания жидкости. В отличие от динамики кипения жидкости при атмосферном давлении, при котором 1 литр волы испаряется в среднем за 40 мин, в нашем случае фазовый переход носит практически взрывной характер. Время фазового перехода не превосходит 50 с. При этом объем жидкой фракции флюида может меняться в широких пределах, что и определяет магнитуду землетрясения. Это теоретическая модель позволяет представить еще одну интерпретацию появления штормовых микросейсм. Экспериментальные данные при регистрации микроземлетрясений соответствуют данной термодинамической модели, что может послужить основанием для проведения дальнейших исследований и подтверждении модели.
ЗАКЛЮЧЕНИЕ
По результатам выполненных исследований можно сделать следующие выводы.
В результате детальных высокоточных сейсмологических исследований зарегистрировано 22 сейсмических события.
- определены азимуты всех событий и произведена коррекция азимутов при использовании данных ближайших сейсмических станций.
- произведен расчет коэффициентов затухания в различных азимутах;
- выделено два направления эпицентров землетрясений с различными коэффициентами затухания;
- с использованием модели геометрической оптики определены параметры затухания сейсмических волн вдоль основных тектонических структур вблизи озера Удыль.
- проведено сопоставление результатов сейсмических наблюдений с данными неоднородности земной коры, выделенными по электроразведочным данным. Установлено качественное пространственное согласие двух методов.
- построена механическая модель геосреды, которая позволяет интерпретировать выявленные закономерности зарегистрированных сейсмических событий, как распространение волны в волноводе. Эта модель на основе законов геометрической оптики, которая успешно применяется при поисках залежей нефти и газа. Применение данной модели для водонасыщенных сред (разломных зон) позволило существенно расширить ее возможности и применить ее для изучения анизотропии геологической среды.
- рассмотрены основные закономерности в динамике микросейсмического шума, на основе которых построена физическая модель генерации микросейсм и их распространения на основе законов термодинамик
