- •Хабаровск – 2015 г. Реферат
- •Содержание
- •Введение
- •1.2 Матричным методом для расчета сейсмограмм
- •1.2.1 Подхода Томсона-Хаскела и его численная реализация
- •1.2.2 Учет горизонтальной неоднородности среды
- •1.3 Распространение сейсмических волн при влиянии неидеальной упругости среды
- •1.3.1 Учет неидеальной упругости при помощи эмпирического подхода
- •1.3.2 Теория деформации, основанная на физических закономерностях о сжимаемости и деформируемости сред
- •Организация работ и размещение станции
- •Обработка данных, полученных во время экспедиции на оз. Удыль
- •Продолжение таблицы 2.3
- •2.7 Физический принцип регистрации землетрясений. Сейсмограф Голицина
- •3.3.2 Регистрация микро землетрясений магнитудой 1-3
- •3.4.2 Годограф прямой волны
- •3.5.2 Механическая модель анизотропной среды
- •3.6.2 Физическая модель на основе законов термодинамики
- •Список использованных источников
- •Приложение б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения в
- •Продолжение приложения в
- •Продолжение приложения в
- •Продолжение приложения г
3.5.2 Механическая модель анизотропной среды
В соответствие с моделью (рисунок 3.11) уменьшение амплитуд сейсмических волн практически на одинаковом расстоянии эпицентров может быть связано только с пространственной неоднородностью земной коры. Поперечная волна S является волной сдвига и она распространяется вдоль разломов как в волноводе. Этим объясняется увеличение отношения амплитуд P и S волн вдоль основных тектонических структур в районе озера Удыль (рисунок 3.13).
По данным регионального каталога гипоцентры землетрясений концентрируются в интервалах 10-25 и 40-60 км. По данным электроразведки горизонтальные неоднородности (рисунок 3.14) чередующихся зон повышенного и пониженного сопротивления также концентрируются в области 10-15 км и 50 км.
Такое пространственное соотношение электроразведочных и сейсморазведочных данных может быть в случае, если реальная геологическая среда обладает свойствами неоднородности, выдержанного простирания. Как правило, зоны пониженных скоростей и зоны пониженных сопротивлений находятся в хорошем согласии друг с другом в разломных зонах.
Рисунок 3.14 – Вертикальный разрез электросопротивлений горных пород. Геоэлектрическая модель по субмериодиальному профилю п. Многовершинный - р. Мухты /28/
По результатам моделирования геофизических полей геологическая среда представлена в виде блоков, размерами порядка 120-150 км с признаками самоподобия 1:2 /29/.
Учитывая результаты соотношений амплитуд продольных и поперечных волн (рисунок 3.12) данную геофизическую модель можно представить в виде систем связанных блоков, с различными коэффициентами связи между блоками вдоль и поперек структур (рисунок 3.15).
Рисунок 3.15 – Механическая модель связанных блоков. Обозначения. Квадраты - самоподобные блоки зсемной коры с коэффициентом подобия 1:2. Стрелки - направления сдвиговых деформаций. Длина стрелки определяет величину сдвига. Пружинки - упругие связи между блоками. Отсутствие стрелок означает меньшую по отношению к остальным блокам степень взаимодействия.
На представленной схеме механической модели земной коры направления больших стрелок совпадает с преобладающим азимутом разломов северо-восточного простирания. На рисунке показаны смещения для блоков второго порядка (все 4 блока находятся в одном блоке 1-го порядка). Аналогичная схема справедлива для блоков третьего порядка и т.д. То есть для данной самоподобной системы блоков динамические жесткости вдоль структур намного меньше им ортогональных. Этим определяется величина относительного горизонтального смещения блоков (длина стрелок вдоль и поперек структур). Данная механическая модель позволяет объяснить прохождение сейсмических волн вдоль тектонических структур в виде волноводов на большие расстояния, даже при незначительной магнитуде землетрясений.
3.6 Физическая модель микросейсмических проявлений до и после землетрясений
3.6.1 Закономерности в спектрах микросейсм и их проявлении до и после землетрясений
На Рисунках 3.16 - 3.18 представлены типичные волновые формы спектрограммы землетрясений и микросейсм до и после землетрясений, которые были получены в результате разработанной программы (Приложение Б)
Рисунок 3.16 - Спектр Х - компоненты землетрясения магнитудой М=1.7 и микросейсм до и после землетрясения
Рисунок 3.17 - Спектр Y - компоненты землетрясения магнитудой М=2.1 и микросейсм до и после землетрясения
Рисунок 3.18 – Спектр Y - компоненты землетрясения магнитудой М=1.4
Наиболее значимые проявления микросейсм для всех землетрясений проявляются за 30-60 с до землетрясения практически во всем спектре мощности самого сейсмического события в интервале частот от 1 до 10–15 Гц. Непосредственно перед землетрясением наблюдается относительное затухание. После землетрясения в течение 30–50 с наблюдается повышенная интенсивность проявления микросейсм в том же интервале спектра. Однако в отличие и синхронного возбуждения геосреды во всем интервале частот до землетрясения, после землетрясения наиболее длительное проявление микросейсм выделяется в интервале частот 5–6 Гц.
Для все событий характерен микросейсмический шум в интервале частот от 0 до 1 Гц. Данные закономерности позволили применить для моделирования слабых землетрясений теорию термодинамики.
