- •Хабаровск – 2015 г. Реферат
- •Содержание
- •Введение
- •1.2 Матричным методом для расчета сейсмограмм
- •1.2.1 Подхода Томсона-Хаскела и его численная реализация
- •1.2.2 Учет горизонтальной неоднородности среды
- •1.3 Распространение сейсмических волн при влиянии неидеальной упругости среды
- •1.3.1 Учет неидеальной упругости при помощи эмпирического подхода
- •1.3.2 Теория деформации, основанная на физических закономерностях о сжимаемости и деформируемости сред
- •Организация работ и размещение станции
- •Обработка данных, полученных во время экспедиции на оз. Удыль
- •Продолжение таблицы 2.3
- •2.7 Физический принцип регистрации землетрясений. Сейсмограф Голицина
- •3.3.2 Регистрация микро землетрясений магнитудой 1-3
- •3.4.2 Годограф прямой волны
- •3.5.2 Механическая модель анизотропной среды
- •3.6.2 Физическая модель на основе законов термодинамики
- •Список использованных источников
- •Приложение б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения б
- •Продолжение приложения в
- •Продолжение приложения в
- •Продолжение приложения в
- •Продолжение приложения г
3.4.2 Годограф прямой волны
Поместим общий источник возбуждения сейсмических волн в центр кругового профиля наблюдений радиуса R и выберем такую систему полярных координат (R,Θ), чтобы полярная ось проходила вдоль простирания вертикальной слоистости, а полюс совпадал с точкой возбуждения, предполагая при этом в целях симметрии результатов, что последняя находится в центре межпластового пространства. Очевидно, что при такой системе наблюдений искомая функция - азимутальное время наблюдений tR0-будет контролироваться числом пересечений пластов по выбранному азимуту, который в среднем равен 260. В рамках принятых выше допущений можно заменить эту совокупность пластов одним толстым пластом с эквивалентной мощностью He=R<ρdsinΘ и расположить его в центре линии, соединяющей точку возбуждения О и точку приема Р с полярными координатами R и Θ (рисунок 3.11).
Рисунок. 3.11 – Модель тонкого пласта для расчета времени первых вступлений
С учетом того, что скорости волн в основной породе и в тонких пластах равны Voи Viсоответственно, можно сразу же получить общее выражение для искомого азимутального времени прохождения прямой волны из точки О в точку P:
tR,Θ = top = toA + tAB + tBP= OA / Vo + AB / Vi + BP / Vo (3.1)
При этом очевидно, что
AB=He/cosα1,
а из центральной симметрии рисунка следует, что
OA=BP и OA + BP = 2S/sine = 2S/cosα,
где 2S = PP'-He = RsinΘ-RρdsinΘ;
e- угол выхода прямой волны из очки возбуждения;
α- угол падения волны на эквивалентный пласт;
αα1–угол преломления на тонком пласте, определяемого из известного закона преломления.
3.5 Механическая модель волноводов по данным инструментальных наблюдений
3.5.1 Пространственное распределение землетрясений относительно пункта наблюдений
В процессе моделирования на ЭВМ рассматривалась возможность использования полученных выше формул для изучения влияния на сейсмическую анизотропию различных физических и пространственных характеристик трещиноватых сред, таких как азимут простирания трещин, угол падения и мощность, пространственная плотность и относительная скорость волн. Отрабатывалась также оптимальная схема наблюдений, методика обработки полевых данных и представления результатов.
Выяснилось, что при изучении анизотропии проходящими, волнами вопрос, связанный с выбором землетрясений, играет заметную роль.
Очевидно, что это наиболее естественная система выбора связана с группированием сейсмических событий вдоль и поперек структур. В процессе обработки выяснилось, что отношения амплитуд продольных и поперечных волн от землетрясений, пришедших с разных азимутов, отличаются в 1,5-2 раза (рисунок 3.12).
Рисунок 3.12 - Отношение амплитуд продольных и поперечных волн в азимутах 0-3600
Из общих соображений ясно, что при изучении азимутальной сейсмической анизотропии информация о параметрах анизотропии содержится в разностном поле времен At = ta - tn, где ta- наблюдаемое поле времен при наличии анизотропии, tn- нормальное поле времен, в отсутствие анизотропии. Отличие отношений амплитуд в 1,5-2 раза не может быть случайным, а отражает общие свойства неоднородностей земной коры. Для первого квадранта в азимутах от 00 до 900 отношение амплитуд P и S волн составляет порядка 6. Для второго квадранта это отношение равно в среднем 4. Для третьего это отношение равно в среднем 4. Для четвертого – 3.5
Это означает, что видимые времена пробега S волн отличаются от фактических вдоль и поперек тектонических структур.
Это соответствует строению земной коры вблизи пункта наблюдений (рисунок 3.13), тектонические нарушения которой представлены меридиональными (Лимурчанскими) разломами, а также разломами северо-восточного простирания (Удыльский разлом).
Рисунок 3.13 – Схема тектонических нарушений вблизи пункта наблюдений /28/
