Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по источникам.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.54 Mб
Скачать

Вопрос 17. Присоединение потребителей в водяных системах теплоснабжения

2.6. Присоединение потребителей в водяных системах теплоснабжения 2.6.1. Зависимые схемы Зависимые схемы – теплоноситель в отопительные приборы поступает непосредственно из тепловых сетей. Таким образом, один и тот же теплоноситель циркулирует как в тепловой сети, так и в отопительной системе. Вследствие этого давление в местных системах отопления определяется режимом давлений в наружных тепловых системах. Поэтому зависимые местные системы отопления используются в условиях, когда давление в тепловых сетях не превышает прочности отопительных приборов (0,6 МПа для чугунных радиаторов; 1,0 МПа – для стальных конвекторов). При высокой температуре сетевой воды (tс.в) требуется применение специальных смесительных устройств для понижения температуры, т. к. в жилых домах в отопительных приборах допускается tс.в  95 °C, на предприятиях tс.в  105÷115 °С. Применяются три зависимые схемы: без смешения; с элеватором; со смесительным насосом (СНС).

Схема без смешения Зависимые схемы без смешения (рис. 2.12). Схема может применятся в случае, когда температура сетевой воды в подающей линии тепловой сети не превышает 90 °С.

Используется, когда в качестве источника применяется небольшая котельная с низкими выходными параметрами теплоносителя в трех- и четырехтрубных сетях (t1 = t3).

В системах централизованного теплоснабжения, работающих по температурному графику 130/70 °С или 150/70 °С при низких температурах наружного воздуха (tн.в), температура сетевой воды в подающей линии тепловой сети tс.в > 90 °С, поэтому на тепловом пункте (ТП) следует предусматривать специальные смесительные устройства для понижения температуры воды перед системой отопления. В качестве смесительных устройств используются: – элеватор; – смесительные насосы.

Схема с элеватором Зависимая схема с элеваторным смешением показана на (рис. 2.13). Вода поступает на абонентский ввод с температурой t1 (t3 < t1). Конструкция и принцип действия элеватора и распределение скоростей и давления теплоносителя в элементах его конструкции показаны на рис. 2.14, 2.15.

Зависимая схема с элеваторным смешением: Gп – подмешиваемый расход; Gс – расход после смешения; Gо – расход из подающей линии на входе в элеватор

Принцип работы водоструйного элеватора заключается в использовании энергии воды из подающего трубопровода (см. рис. 2.14). Рабочая вода с давлением P1 на выходе из сопла (К) приобретает значительную скорость, статическое давление ее становится меньше, чем давление в обратной магистрали P2, в результате чего обратная вода подсасывается струей рабочей воды. В камере смешения (КС) скорость воды выравнивается, давление постоянно; в диффузоре (Д) скорость смешанного потока уменьшается по мере увеличения его сечения, а статическое давление воды увНа выходе из сопла должно быть создано разрежение, тогда в патрубок будет подсасываться теплоноситель в количестве Gп c температурой t20. Для нормальной работы элеватора перепад давления на абонентском вводе должен поддерживаться в пределах Р = 15÷18 м вод. ст. еличивается до P3 > P2.

Конструкция элеватора: К – конфузор; КС(Г) – камера смешения (горловина); Д – диффузор

Изменение давления и скорости рабочей среды в элементах элеватора

Схема со смесительным насосом (СНС) Если на абонентском вводе нет требуемого перепада давления для установки элеватора, тогда в качестве смесительного устройства устанавливается смесительный насос (рис. 2.16). Условие установки насоса: t3 < t1.

Зависимая схема с насосным смешением

Недостаток схемы: сопровождение работы центробежных насосов вибрацией и шумом, поэтому от установки СНС в жилых домах отказываются. Как правило, смесительные насосы устанавливаются на тепловых пунктах: на ИТП, если оно в отдельном здании, ЦТП, КРП.

Независимые схемы В независимых схемах присоединения теплоноситель из тепловой сети поступает в подогреватель, в котором его тепло используется для нагревания воды, заполняющей местную систему отопления. Сетевая вода и вода в местной системе отопления разделена поверхностью нагрева и, таким образом, сеть и система отопления полностью гидравлически изолированы друг от друга. Гидравлическая изоляция теплоносителей на абонентском вводе используется для защиты местных установок от завышенного или заниженного давления в тепловых сетях, при которых возможно разрушение нагревательных приборов или опорожнение местных систем отопления (рис. 217).

Независимая схема: ПСО – подогреватель системы отопления (водоводяной); ЦН – циркуляционный насос системы отопления; ППН – подпиточный насос системы отопления; РТ – авторегулятор температуры воды в системе

ППН обеспечивает восполнение утечек теплоносителя из системы отопления, включается периодически. При пуске системы обеспечивает заполнение системы отопления. РТ – обеспечивает регулирование температуры воды в системе отопления. Схема обеспечивает надежное теплоснабжение. Недостаток: дополнительная установка на вводах подогревателей и насосов приводит к увеличению капитальных и эксплуатационных затрат. Применение: проектирование систем теплоснабжения зданий повышенной этажности (12-ти и более этажей, в отдельных случаях 9–10 этажей), при превышении давления свыше 6 атм (в этом случае для любой этажности зданий может применяться независимая схема). В современных районах подогреватели устанавливаются на ЦТП.

Открытые тепловые сети В открытых тепловых сетях осуществляется непосредственный водоразбор из тепловых сетей на ГВС (рис. 2.18).

Схема включения системы ГВС

Закрытые тепловые сети В закрытых системах дополнительно устанавливаются водоводяные подогреватели ГВС. На предприятиях возможна установка пароводяных подогревателей ГВС. В систему ГВС поступает водопроводная (питьевая) вода после подогревателя. Подогреватели ГВС могут быть включены в соответствии с одной из трех схем (см. рис. 2.19).

Параллельная схема

Расход сетевой воды на отопление является постоянной величиной и поддерживается на расчетном уровне регулятором расхода РР. Расход сетевой воды на горячее водоснабжение является резко переменной величиной. Регулятор РТ изменяет этот расход в соответствии с нагрузкой ГВС. Недостатки схемы: при параллельном присоединении отопления и ГВС обратная сетевая вода, возвращаемая из отопительной установки с температурой порядка 40÷70 °С, не используется для подогрева холодной водопроводной воды, имеющей на вводе температуру порядка 5 °С, хотя теплом обратной воды после отопления можно покрыть значительную долю нагрузки ГВС, поскольку tгвс, подаваемой в систему горячего водоснабжения, обычно не превышает 55÷60 °С. При рассматриваемой схеме вся тепловая нагрузка ГВС удовлетворяется за счет тепла сетевой воды, поступающей в водоводяной подогреватель непосредственно из подающей линии тепловой сети. Поэтому получается завышенный расход воды в городских сетях. Это вызывает увеличение диаметров тепловых сетей и рост начальных затрат на их сооружение, а также увеличение расхода электрической энергии на перекачку теплоносителя (см. рис. 2.19). Но независимое регулирование тепла на горячее водоснабжение исключает снижение расхода тепла на отопление при максимальных водоразборах. Поэтому параллельные присоединения подогревателей применяется при значительной доле тепловой нагрузки на горячее водоснабжение 1,2 '/ 0 г max  Q Q , а также в зданиях с небольшим суммарным расходом тепла (до 230 кВт), когда простота приготовления горячей воды и затраты на оборудование экономически выгоднее перерасхода теплоносителя.