- •Матрицы. Основные понятия
- •Классификация матриц: квадратная, диагональная и т.Д. Транспортирование матрицы.
- •Матрицы. Действия над матрицами.
- •Элементарные преобразования матриц. Приведение матрицы к ступенчатому виду.
- •5. Невырожденные матрицы. Обратная матрица.
- •6.Алгоритм нахождения обратной матрицы
- •7. Определители 2-го и 3-го порядка. Основные понятия.
- •8. Определители. Свойства определителей.
- •9.Миноры и алгебраические дополнения элементов определителя. Разложение определителя по элементам строки или столбца
- •10. Ранг матрицы. Методы вычисления.
- •11. Системы линейных уравнений . Основные понятия.
- •12. Теорема Кронекера – Капелли.
- •14. Матричный метод решения систем линейных уравнений ( с помощью обратной матрицы).
- •14.1 Формулы Крамера решения систем линейных уравнений.
- •15. Системы линейных однородных уравнений, условия совместности и методы решения.
- •16. Векторы. Основные понятия.
- •17. Векторы. Действия над векторами.
- •18.Линейно зависимые и линейно независимые векторы. Условие линейной зависимости.
- •19.Разложение вектора по базисным ортам. Направляющие косинусы.
- •20. Скалярное произведение векторов. Свойства скалярного произведения.
- •21. Угол между двумя векторами. Ортогональные векторы.
- •22. Векторное произведение векторов. Свойства векторного произведения. Геометрический смысл.
- •23. Смешанное произведение векторов. Свойства смешанного произведения. Геометрический смысл.
- •.Основные задачи аналитической геометрии на плоскости.
- •Полярная система координат. Связь между полярными и прямоугольными координатами.
- •24.Общее уравнение прямой на плоскости. Частные случаи. Нормальный вектор прямой.
- •25. Различные виды уравнения прямой на плоскости.
- •26. Нормальное уравнение прямой. Расстояние от точки до прямой.
26. Нормальное уравнение прямой. Расстояние от точки до прямой.
Нормальное уравнение прямой
Пусть прямая определяется заданием p и α (см. рис. 45). Рассмотрим прямоугольную систему координат Оху. Введем полярную систему, взяв О за полюс и Ох за полярную ось. Уравнение прямой можно записать в виде
т.е.
Н
о, в силу формул, связывающих прямоугольные и полярные координаты имеем: Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид
(10.11)
У
равнение
(10.11) называется нормальным
уравнением прямой.
Покажем, как привести уравнение (10.4) прямой к виду (10.11).
Умножим все члены уравнения (10.4) на некоторый множитель . Получим Это уравнение должно обратиться в (10.11). Следовательно, должны выполняться равенства: Из первых двух равенств находим ,т.е.
Множитель называется нормирующим множителем. Согласно третьему равенству знак нормирующего множителя противоположен знаку свободного члена С общего уравнения прямой.
Пример 10.2. Привести уравнение к нормальному виду.
Решение: Находим нормирующий множитель Умножая данное уравнение на , получим искомое нормальное уравнение прямой:
Р
асстояние
от точки до прямой
Пусть заданы
прямая L
уравнением
и точка
(см. рис. 47). Требуется найти расстояние
от точки
до прямой L.
Решение: Расстояние
d
от точки
до прямой L
равно модулю проекции вектора
,
где
– произвольная точка прямой L,
на направление нормального вектора
.
Следовательно,
Так как точка
принадлежит прямой L,
то
,
т.е.
Поэтому
(10.13)
что и требовалось получить.
Пример
10.3. Найти
расстояние от точки
до прямой
Решение: По формуле
(10.13) получаем
