- •2 Интерференция света. Когерентность световых волн. Время и длина когерентности.
- •5 Применение интерференции. Просветление оптики. Интерферометры. Интерференционные рефрактометры
- •6 Дифракция . Принцип Гюйгенса-Фринеля . Метод зон Фринеля.
- •7 Дифракция Фринеля на круглом отверстии в диске.
- •8 Дифракция Фраунгофера в одной щели.
- •11 Дифракция на пространственной решетке. Формула Вульфа-Брэггов . Рассеяние света.
- •10 Разрешающая способность (объекива, спектрального прибора, дифракционной решетки)
- •12 Понятие о голографии
- •13 Поляризация света
- •1 Естественный и поляризованный свет
- •14 Степень поляризации. Закон Малюса.
- •15.Поляризация света при отражении и преломлении. Закон Брюстера
- •17.Поляризационные призмы и поляроиды
- •18 Двойное лучепреломление. Оптическая Анизотропия
5 Применение интерференции. Просветление оптики. Интерферометры. Интерференционные рефрактометры
Применения интерференции очень важны и обширны. Интерференция света имеет самое широкое применение для измерения длины волны излучения, исследования тонкой структуры спектральной линии, определения плотности, показателей преломления и дисперсионных свойств веществ, для измерения углов, линейных размеров деталей в длинах световой волны, для контроля качества оптических систем и многого другого. На использовании интерференции света основано действие интерферометров и интерференционных спектроскопов; метод голографии также основан на интерференции света. Интерференцию поляризованных лучей широко используют в кристаллооптике для определения структуры и ориентации осей кристалла, в минералогии для определения минералов и горных пород, для обнаружения и исследования напряжений и деформаций в твердых телах, для создания особо узкополосных светофильтров и др.
Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны l0. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).
Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло — воздух, сопровождается отражением »4 % падающего потока (при показателе преломления стекла »1,5).
Для устранения указанных недостатков осуществляют так называемое просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления меньшим, чем у материала линзы. При отражении света от границ раздела воздух — пленка и пленка — стекло возникает интерференция когерентных лучей 1' и 2' . Толщину пленки d и показатели преломления стекла nс и пленки n можно подобрать так, чтобы интерферирующие лучи гасили друг друга
Интерферометры – измерительные приборы, в которых используется интерференция волн. Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется..
Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.
