- •2. Место тса в системах управления. Государственная система приборов и средств автоматизации (гсп). Назначение, принципы построения и структура.
- •3. Потенциометрические измерительные преобразователи перемещений. Принцип действия, схемы включения и источники возникновения погрешности. Достоинства и недостатки.
- •4. Индуктивные измерительные преобразователи. Принцип действия. Однотактный индуктивный датчик.
- •5. Индуктивные измерительные преобразователи. Принцип действия. Двухтактный индуктивный датчик. Дифференциальная и мостовая схема.
- •6. Емкостные измерительные преобразователи. Назначение и классификация. Принцип действия, схемы включения и характеристики. Достоинства и недостатки.
- •7. Дифтрансформаторный преобразователь перемещений. Принцип действия, схема включения, характеристики.
- •8. Средства измерения температуры. Классификация приборов. Термометры сопротивления. Принцип действия. Схемы включения.
- •9. Средства измерения температуры. Классификация приборов. Термоэлектрические преобразователи. Принцип действия. Схемы включения. Компенсация температуры холодного спая
- •10. Средства измерения давления. Способы измерения и эффекты, положенные в основе измерения.
- •11. Средства измерения уровня. Гидростатические, лазерные, магнитострикционные, буйковые уровнемеры
- •12. Средства измерения расхода. Расходомер переменного перепада давления. Уравнение расхода. Типы сужающих устройств. Монтаж расходомера.
- •13. Тахогенераторы. Назначения, примеры использования и классификация. Тахогенераторы постоянного и переменного тока. Влияние нагрузки. Требования к тахогенераторам.
- •14. Тахогенераторы. Назначения, примеры использования и классификация. Вывод передаточной функции тахогенератора постоянного тока.
- •15. Дискретные преобразователи. Поворотные шифраторы. Основные типы, принципы действия и особенности применения. Код Грея.
- •16. Вращающиеся трансформаторы. Назначение и классификация. Принцип действия и основные соотношения. Влияние нагрузки.
- •17. Релейные средства автоматизации. Классификация и основные параметры реле. Схемы включе-ния. Режимы работы электромеханических усилителей.
- •18. Электромагнитные реле постоянного тока. Принцип действия, виды и особенности.
- •19. Электромагнитные реле переменного тока. Способы устранения вибрации якоря. Методы искрогашения и дугогашения.
- •20. Полупроводниковые усилительные устройства.
- •Igbt — трёхэлектродный силовой электронный прибор, используемый, в основном, как мощный электронный ключ в импульсных источниках питания, инверторах, в системах управления электрическими приводами.
- •21. Импульсное управление двигателем постоянного тока. Симметричный и несимметричный законы управления ключами. Управляемый выпрямитель.
- •22. Пневматическая ветвь гсп. Пример пневматической системы автоматизации (фса). Достоинства и недостатки пса. Поколения пса.
- •23. Пневматическая ветвь гсп. Основные понятия и соотношения пса. Аналогия с законами электричества. Дроссели. Виды дросселей. Массовый и объемный расход через дроссели.
- •24. Пневматическая ветвь гсп. Дроссели с обратными клапанами. Соединения дросселей. Емкостные элементы.
- •29. Усэппа. Характеристика и принципы построения. Элементы непрерывного действия: элементы сравнения и повторители. Усилитель мощности.
- •30. Элементы регулирующих устройств усэппа. Пневмореле и элементы, реализующие логические функции.
- •32. Энергообеспечивающая подсистема пса. Системы подготовки воздуха. Составные части системы подготовки воздуха. Виды и условные обозначения.
- •1) Сжать до требуемого значения давления;
- •2) Осушить;
- •3) Очистить.
- •33. Вакуумная техника. Вакуумная присоска и эжектор. Принципы действия.
10. Средства измерения давления. Способы измерения и эффекты, положенные в основе измерения.
жидкостные (основанные на уравновешивании давления столбом жидкости);
поршневые (измеряемое давление уравновешивается внешней силой, действующей на поршень);
пружинные (давление измеряется по величине деформации упругого элемента);
электрические (основанные на преобразовании давления в какую-либо электрическую величину).
По виду измеряемого давления приборы подразделяются на следующие:
манометры;
вакуумметры;
мановакуумметры;
напоромеры;
тягомеры;
тягонапоромеры;
дифманометры;
микроманометры;
барометры.
По принципу действия основную группу приборов для измерения давлений можно подразделить на следующие:
жидкостные;
деформационные (пружинные);
грузопоршневые;
электрические и др.
К жидкостным относятся манометры, принцип действия которых основан на уравновешивании измеряемого давления или разности давлений давлением столба жидкости . К таким манометрам относятся U-образные манометры, состоящие из сообщающихся сосудов, в которых измеряемое давление определяют по одному или нескольким уровням жидкости.
В деформационных манометрах от измеряемого давления зависит степень деформации чувствительного элемента или развиваемой им силы. В состав деформационных входит трубчато-пружинный манометр, в котором чувствительным элементом является трубчатая пружина. Сильфонный функционирует на основе сильфона, мембранный — на основе мембраны или мембранной коробки.
Манометр с вялой мембраной, в котором измеряемое давление воспринимается вялой мембраной и преобразуется в силу, уравновешиваемую дополнительным устройством, также относится к деформационным.
В грузопоршневых приборах, имеющих в большинстве случаев в качестве рабочего тела жидкость и часто называемых жидкостными, измеряемое давление уравновешивается давлением, создаваемым массой поршня с грузоприемным устройством, и массой грузов с учетом сил жидкостного трения.
Электрические манометры функционируют по принципу зависимости одного из электрических параметров чувствительного элемента первичного преобразователя от давления.
11. Средства измерения уровня. Гидростатические, лазерные, магнитострикционные, буйковые уровнемеры
Для измерения уровня жидкостей применяются специальные средства измерений – уровнемеры.
Многообразие типов уровнемеров, принцип действия которых основан на различных физических методах, объясняется разнообразием свойств измеряемых жидкостей. Наибольшее распространение в промышленном использовании получили следующие виды уровнемеров: буйковые, пьезометрические, гидростатические, поплавковые, и ёмкостные.
Буйковый уровнемер – уровнемер, принцип действия которого основан на изме-рении перемещения буйка или силы гидростатического давления, действующей на буёк.
Буёк в отличие от поплавка не плавает на поверхности жидкости, а погружён в жидкость и перемещается в зависимости от её уровня. Буйковые уровнемеры наиболее часто применяются для измерения уровня однородных, в том числе агрессивных, жидкостей, находящихся при высоких рабочих давле-ниях (до 32 МПа), широком диапазоне температур (от –200 до +600С) и не обладающих свойствами адгезии (прилипания) к буйкам.
Главной особенностью буйковых уровнемеров является возможность измерения уровня границы раздела двух жидкостей.
Недостатком буйковых уровнемеров являются зависимость их точности от плотности и температуры измеряемой среды, ограниченность использования для больших (свыше 16 м) диапазонов измерения уровней жидкостей и жидкостей обладающих адгезией к буйку.
В основе принципа действия гидростатических уровнемеров - измерение давления создаваемого гидростатическим столбом жидкости находящимся выше чувствительного элемента датчика и преобразование измеренного значения в действительное значение уровня. Так как значение уровня создаваемого гидростатическим давлением зависит от плотности среды и совершенно не зависит от формы, размера и объема емкости. Конструктивно из можно отнести к датчикам дифференциального давления. На мембрану с одной стороны воздействует давление создаваемое столбом измеряемой жидкости, с другой стороны на мембрану воздействует атмосферное давление для обеспечения точности измерения. При измерении уровня продукта находящегося в емкости по давлением, на мембрану вместо атмосферного давления, необходимо подавать давление, имеющееся в емкости.
По конструкции гидростатические датчики уровня разделяются на: погружные (колокольные) и мембранные (монтируемые в емкость). В случае погружного уровнемера столю измеряемой жидкости воздействует на мембрану через воздушную подушку, что препятствует попаданию на мембрану загрязненной среды. В датчике с емкостной или тензорезистивной ячейкой измеряемый столб воздействует на прямую на мембрану. В этом случае минимально измеряемый уровень находиться в месте установки прибора.
Лазерный уровнемер
Индекс преломления пластмассы и воздуха изменяется в большом диапазоне. Инфракрасный оптический луч полностью отражается на границе пластмассы и воздуха. Напротив, инфракрасный луч полностью проходит через границу пластмассы и жидкости. Когда датчик вне жидкости, инфракрасное излучение отражается призмой назад к приемнику. Когда датчик смочен жидкостью, только часть оптического иныракрасного излучения отражается назад к приемнику, в то время как большинство не отражаясь уходит в жидкость. Изменение уровня сигнала отслеживает встроенный фотоприемник и соответственно управляет переключением.
Магнитострикционный уровнемер использует характерную особенность магнитострикционного провода, который размещен в жестком (до 3 метров) или гибком зонде (до 15 метров). Магнитное поле магнитострикционного провода создает электромагнитную волну. От точки взаимодействия расположенного в поплавке магнитного диска волна возвращается обратно с определенной скоростью. Производится измерение времени прохождения волны, которое пропорционально расстоянию, на котором поплавок находится от электронных компонентов. Вышеуказанное расстояние является опорным для всех сигналов уровнемера.
