- •2. Место тса в системах управления. Государственная система приборов и средств автоматизации (гсп). Назначение, принципы построения и структура.
- •3. Потенциометрические измерительные преобразователи перемещений. Принцип действия, схемы включения и источники возникновения погрешности. Достоинства и недостатки.
- •4. Индуктивные измерительные преобразователи. Принцип действия. Однотактный индуктивный датчик.
- •5. Индуктивные измерительные преобразователи. Принцип действия. Двухтактный индуктивный датчик. Дифференциальная и мостовая схема.
- •6. Емкостные измерительные преобразователи. Назначение и классификация. Принцип действия, схемы включения и характеристики. Достоинства и недостатки.
- •7. Дифтрансформаторный преобразователь перемещений. Принцип действия, схема включения, характеристики.
- •8. Средства измерения температуры. Классификация приборов. Термометры сопротивления. Принцип действия. Схемы включения.
- •9. Средства измерения температуры. Классификация приборов. Термоэлектрические преобразователи. Принцип действия. Схемы включения. Компенсация температуры холодного спая
- •10. Средства измерения давления. Способы измерения и эффекты, положенные в основе измерения.
- •11. Средства измерения уровня. Гидростатические, лазерные, магнитострикционные, буйковые уровнемеры
- •12. Средства измерения расхода. Расходомер переменного перепада давления. Уравнение расхода. Типы сужающих устройств. Монтаж расходомера.
- •13. Тахогенераторы. Назначения, примеры использования и классификация. Тахогенераторы постоянного и переменного тока. Влияние нагрузки. Требования к тахогенераторам.
- •14. Тахогенераторы. Назначения, примеры использования и классификация. Вывод передаточной функции тахогенератора постоянного тока.
- •15. Дискретные преобразователи. Поворотные шифраторы. Основные типы, принципы действия и особенности применения. Код Грея.
- •16. Вращающиеся трансформаторы. Назначение и классификация. Принцип действия и основные соотношения. Влияние нагрузки.
- •17. Релейные средства автоматизации. Классификация и основные параметры реле. Схемы включе-ния. Режимы работы электромеханических усилителей.
- •18. Электромагнитные реле постоянного тока. Принцип действия, виды и особенности.
- •19. Электромагнитные реле переменного тока. Способы устранения вибрации якоря. Методы искрогашения и дугогашения.
- •20. Полупроводниковые усилительные устройства.
- •Igbt — трёхэлектродный силовой электронный прибор, используемый, в основном, как мощный электронный ключ в импульсных источниках питания, инверторах, в системах управления электрическими приводами.
- •21. Импульсное управление двигателем постоянного тока. Симметричный и несимметричный законы управления ключами. Управляемый выпрямитель.
- •22. Пневматическая ветвь гсп. Пример пневматической системы автоматизации (фса). Достоинства и недостатки пса. Поколения пса.
- •23. Пневматическая ветвь гсп. Основные понятия и соотношения пса. Аналогия с законами электричества. Дроссели. Виды дросселей. Массовый и объемный расход через дроссели.
- •24. Пневматическая ветвь гсп. Дроссели с обратными клапанами. Соединения дросселей. Емкостные элементы.
- •29. Усэппа. Характеристика и принципы построения. Элементы непрерывного действия: элементы сравнения и повторители. Усилитель мощности.
- •30. Элементы регулирующих устройств усэппа. Пневмореле и элементы, реализующие логические функции.
- •32. Энергообеспечивающая подсистема пса. Системы подготовки воздуха. Составные части системы подготовки воздуха. Виды и условные обозначения.
- •1) Сжать до требуемого значения давления;
- •2) Осушить;
- •3) Очистить.
- •33. Вакуумная техника. Вакуумная присоска и эжектор. Принципы действия.
18. Электромагнитные реле постоянного тока. Принцип действия, виды и особенности.
Электромагнитные реле являются наиболее распространенными из группы электромеханических реле и получили широкое применение в устройствах автоматики, телемеханики и вычислительной техники.
Если электромагнитные реле используются для переключения мощных цепей тока, они называются контакторами.
Реле постоянного тока подразделяются на нейтральные и поляризованные.
Нейтральное реле одинаково реагирует на постоянный ток обоих направлений, протекающий по его обмотке, положение якоря не зависит от направления тока в обмотке реле.
Поляризованные реле реагируют на полярность сигнала.
По характеру движения якоря электромагнитные нейтральные реле подразделяются на два типа: с угловым движением якоря и втяжным якорем.
При детальном рассмотрении работы реле в процессе срабатывания и отпускания можно определить четыре этапа.
Этап I— срабатывание реле
Этап II— работа реле
Этап III— отпускание р е л е.
Этап IV— покой реле
Тяговые и механические характеристики электромагнитного реле
Электромагнитное тяговое усилие — сила притяжения якоря к катушке реле прямо пропорциональна квадрату тока в катушке, обратно пропорциональна квадрату длины δ воздушного зазора и не зависит от направления тока в управляющей обмотке
19. Электромагнитные реле переменного тока. Способы устранения вибрации якоря. Методы искрогашения и дугогашения.
В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе под действием электромагнитной силы Fэ, пропорциональной магнитному потоку Фδ, возникающему в зазоре между якорем и сердечником и создаваемому при протекании тока в обмотке электромагнита:
СПОСОБЫ УСТРАНЕНИЯ ВИБРАЦИИ ЯКОРЯ РЕЛЕ ПЕРЕМЕННОГО ТОКА
Применение двухфазного реле. На рис. 11.9, а изображена схема двухфазного реле переменного тока, имеющего две обмотки, расположенные на двух сердечниках ЭМ1 и ЭМ2 с общим якорем. Обмотки реле соединены параллельно друг другу. В цепь одной из обмоток включен конденсатор С, благодаря чему токи I1 и I2 в обмотках реле оказываются сдвинутыми по фазе на угол π/2 (рис. 11.9, б). Так как токи в обмотках проходят через нуль в разные моменты времени, то результирующее тяговое усилие F3(p), действующее на якорь, никогда не обращается в нуль и имеет постоянное значение, т.е. не содержит переменной составляющей (рис. 11.9, в).
Применение короткозамкнутого витка (экрана), охватывающего часть конца сердечника (расщепленный сердечник), является наиболее эффективным способом устранения вибрации якоря реле.
На рис. 11.10 изображена схема реле переменного тока с короткозамкнутым витком (контакты реле и выводы обмотки на схеме не показаны). Конец сердечника, обращенный к якорю, расщеплен на две части, на одну из которых надета короткозамкнутая обмотка — экран Э (один или, несколько витков). Принцип работы реле заключается в следующем. Переменный магнитный поток Фосн основной обмотки ωосн проходя через разрезанную часть сердечника, делится на две части. Часть потока Ф2 проходит через экранированную половину полюса сечением Sδ2, в которой размещается короткозамкнутая обмотка (экран), а другая часть потока Ф1(проходит через неэкранированную половину полюса сечением Sδ1. Поток Ф2 наводит в короткозамкнутом витке ЭДС екз, которая создает ток Iкз. При этом возникает еще один магнитный поток Фкз, который воздействует на магнитный поток Ф2 и вызывает его отставание относительно потока Ф1 по фазе на угол ф = 60... 80°. Благодаря этому результирующее тяговое усилие Fэ никогда не доходит до нуля, так как потоки проходят через нуль в разные моменты времени.
Применяются два основных метода искро- и дугогашения: шунтирование индуктивности разрываемой цепи и шунтирование контактов.
