- •1 Усталость металла
- •1.1 Явление усталости
- •1.2 Факторы, влияющие на сопротивление усталости
- •1.2.1 Влияние структурного состояния материала
- •1.2.2 Влияние состояния поверхностного слоя
- •1.2.3 Влияние температуры и среды испытания
- •1.2.4 Масштабный фактор
- •1.2.5 Влияние частоты нагружения
- •1.2.6 Влияние концентрации напряжений
- •1.2.7 Влияние контактного трения
- •1.4 Структурные изменении в процессе усталости
- •1.5 Дислокационный механизм циклической деформации
- •Роль поверхности в развитии циклической деформации
- •1.7 Закономерности и микромеханизмы зарождения и распространения усталостных трещин
- •Материалы и методики исследования
- •2.1 Материалы исследования
- •Методики исследования
- •3.1 Методы электролитического полирования
- •3.2 Метод нанесения координатной сетки
- •3.3 Механические испытания на знакопеременный изгиб
- •3.4 Металлографические исследования
- •3.5 Измерение микротвердости
- •Исследование усталостной деформации
- •4.1 Расчет максимальных нормальных (σmax) и касательных (τmax) напряжений на поверхности плоского образца при изгибе
- •4.2 Исследования особо чистого алюминия а999
- •4.3 Технический алюминий
- •3.1 Предпроектный анализ
- •3.1.1 Практическая значимость
- •3.1.2 Потенциальные потребители результатов исследования
- •3.1.3 Анализ конкурентных технических решений с позиции ресурсоэффективности и ресурсосбережения
- •3.1.5 Оценка готовности проекта к коммерциализации
- •3.2 Инициация проекта
- •3.3 Планирование управления научно-техническим проектом.
- •3.3.1 Иерархическая структура работ проекта
- •Образец а999 и а7
- •3.3.2 Контрольные события проекта
- •3.3.3 План проекта
- •3.3.4 Бюджет научного исследования
- •3.4 Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования
- •3.4.1 Оценка сравнительной эффективности исследования
- •Анализ вредных факторов
- •1.1. Шум на рабочем месте
- •1.2.Микроклимат
- •1.3.Освещение
- •2. Анализ опасных факторов
- •2.1. Электрическая безопасность
- •2.2.Пожаробезопасность
- •3.Охрана окружающей среды
- •4. Защита в чрезвычайных ситуациях
- •5. Организационные мероприятия
- •Заключение
- •Список литературы
- •Гост 12.1.038-82. Ссбт. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов
1.2 Факторы, влияющие на сопротивление усталости
Прогнозирование поведения металлических материалов при циклическом нагружении зависит от множества факторов[2]:
1) структурного состояния, термической обработки (размер зерна; размер, форма и количество выделений или различных фаз; плотность дислокаций и их распределение) и соответственно от его механических свойств;
2) состояния поверхностного слоя (химический состав, механические свойства и структура; остаточные напряжения, зависящие от вида механической или химико-термической обработки);
3) температуры и среды испытания;
4) масштабного фактора;
5) частоты нагружения;
6) концентрации напряжений;
7) асимметрии цикла нагружения;
8) вида напряженного состояния;
9) контактного трения.
Факторы влияют по-разному на циклическую прочность гладких образцов (без концентратора напряжений) и закономерности хода кинетических диаграмм усталостного разрушения, которые строятся с использованием образцов с заранее выращенной исходной усталостной трещиной[2].
1.2.1 Влияние структурного состояния материала
Размер зерна является важнейшим структурным параметром для металлических материалов.
В легких сплавах большое влияние, кроме размера зерна, на сопротивление усталости также оказывает степень рекристаллизации. В высокопрочных металлических материалах часто определяющим структурным фактором является размер субзерна или одной из структурных составляющих[3].
Чаще всего с уменьшением размера зерна предел выносливости возрастает, хотя в ряде работ показано, что при измельчении структуры металла не всегда изменяется долговечность. При анализе влияния структурного фактора на циклическую прочность необходимо иметь в виду, что закономерности разрушения металлических материалов при циклическом и статическом нагружении имеют много общего. Для циклического нагружения зависимость предела усталости σR от размера зерна можно выразить формулой, аналогичной зависимости предела текучести от размера зерна:
σ = σiR + КRd-1/2, (1)
где σiR и КR – постоянные[2].
1.2.2 Влияние состояния поверхностного слоя
Усталостное разрушение начинается с поверхности металлических материалов. Это связано с тем, что наиболее интенсивная пластическая деформация при усталости протекает в приповерхностных слоях глубиной порядка размера зерна. Поведение и состояние этого слоя определяет долговечность до зарождения усталостных трещин и во взаимосвязи с деформационными характеристиками всего объема металла обусловливает уровень предела выносливости, а также уровень порогового коэффициента интенсивности напряжений, необходимого для старта усталостной трещины. Наличие концентраторов напряжений (например, от грубой механической обработки) и других дефектов на поверхности, остаточных напряжений растяжения, агрессивной среды и ряда других факторов приводит к снижению предела выносливости. Поверхностное пластическое деформирование и различные виды химико-термических обработок повышают предел выносливости металлических материалов[2].
