- •Содержание
- •Предисловие
- •2. Производная сложной функции.
- •3. Производная второго порядка. Механический смысл второй производной.
- •4. Дифференциал функции.
- •5. Функции многих переменных. Частные производные и дифференциалы.
- •2. Простейшие способы интегрирования.
- •3. Определенный интеграл и его свойства.
- •4. Связь между определенным и неопределенным интегралами.
- •5. Дифференциальное уравнение.
- •Линейные однородные уравнения второго порядка с постоянными коэффициентами.
- •Лекция №3 элементы теории вероятности и математической статистики.
- •1.Случайное событие. Вероятность случайного события.
- •2. Случайные величины. Закон распределения и числовые характеристики дискретных случайных величин.
- •3. Непрерывные случайные величины. Нормальный закон распределения (закон Гаусса).
- •4. Статистическое распределение выборки. Гистограмма.
- •5. Обработка результатов прямых и косвенных измерений.
- •6. Понятие о корреляционном анализе.
- •2. Основные законы динамики вращательного движения.
- •3. Механические свойства тканей.
- •4. Биомеханические процессы в опорно-двигательном аппарате человека.
- •Незатухающие гармонические колебания.
- •Затухающие гармонические колебания.
- •Энергия колебательного движения.
- •5. Вынужденные колебания.
- •6. Сложение гармонических колебаний одинакового направления.
- •7. Сложное колебание и его гармонический спектр.
- •Лекция №6 механические волны. Акустика.
- •1. Механические волны. Уравнение волны. Волновое уравнение.
- •2. Энергия волны. Вектор Умова.
- •3. Эффект Доплера.
- •4. Природа звука. Физические характеристики звуковых волн.
- •5. Распространение звуковых волн в среде. Волновое сопротивление.
- •Лекция №7
- •Звуковые методы исследования в клинике.
- •3. Ультразвук (уз), источники уз. Особенности распространения ультразвуковых волн.
- •Медико-биологическое применение ультразвука.
- •Инфразвук (из), особенности его распространения. Действие инфразвуков на биологические объекты.
- •Лекция №8 гидродинамика вязкой жидкости.
- •1.Стационарное течение жидкости. Условие неразрывности струи.
- •2. Уравнение Бернулли и его следствия.
- •3. Вязкость жидкости. Уравнение Ньютона.
- •4. Ламинарное и турбулентное течение. Число Рейнольдса.
- •5. Течение вязкой жидкости по трубам. Формула Пуазейля. Гидравлическое сопротивление.
- •Лекция №9 физические основы гемодинамики.
- •1. Движение жидкости и крови по трубам с эластичными стенками. Кровеносная система как разветвление труб.
- •2. Распространение пульсовых волн.
- •3. Нарушения гемодинамических показателей сосудистой системы.
- •4. Модельные представления процесса кровообращения.
- •5. Работа и мощность сердца.
- •6. Физические основы клинического метода измерения давления крови.
- •2. Первое начало термодинамики.
- •3. Второе начало термодинамики.
- •4. Связь между свободной, связанной энергией и энтропией.
- •5. Основы теории открытых систем. Отличия стационарного состояния от термодинамического равновесия.
- •6. Термометрия и калориметрия.
- •7. Гипертермия и гипотермия.
- •Лекция №11 электрический диполь. Физические основы электрокардиографии.
- •1. Основные характеристики электрического поля.
- •2. Электрический диполь. Диполь в электрическом поле.
- •3. Электрическое поле диполя.
- •4. Понятие о дипольном электрическом генераторе (токовом диполе).
- •5. Физические основы электрокардиографии.
- •6. Теория отведений Эйнтховена. Вектроэлектрокардиография.
- •Лекция №12 постоянный ток. Действие постоянного тока на организм.
- •1. Электропроводимость биологических тканей и жидкостей для постоянного тока. Явление поляризации.
- •2. Механизмы действия постоянного тока на организм.
- •3. Гальванизация. Аппарат гальванизации.
- •4. Лекарственный электрофорез.
- •Лекция №13 переменный ток. Природа емкостных свойств тканей организма.
- •1. Получение переменного тока. Основные его характеристики.
- •2. Различные виды электрических сопротивлений в цепи переменного тока.
- •3. Полное сопротивление (импеданс) в цепи переменного тока. Р езонанс напряжения.
- •4. Полное сопротивление (импеданс) тканей организма. Использование метода электропроводности в медицине.
- •Лекция №14 магнитное поле. Действие магнитных полей на организм человека.
- •1. Основные характеристики магнитного поля.
- •2. Магнитные свойства вещества.
- •3. Действие магнитных полей на живые организмы.
- •4. Использование магнитных полей в медицине.
- •2. Надёжность медицинской аппаратуры.
- •3. Электробезопасность медицинской аппаратуры.
- •4. Общая схема получения, передачи и регистрации медико-биологической информации.
- •5. Электроды для съёма биоэлектрического сигнала.
- •6. Датчики медико-биологической информации.
- •Лекция №16 высокочастотная электротерапия и электрохирургия.
- •1. Воздействие радиоволн на биологические структуры.
- •2. Нагревание проводников высокочастотным током. Диатермия. Электрохирургия. Дарсонвализация.
- •3. Нагревание проводника в переменном магнитном поле. Индуктотермия.
- •4. Нагревание проводников и диэлектриков в ультравысокочастотном электрическом поле. Увч-терапия.
- •5. Микроволновая терапия.
- •2. Липидные модельные мембраны.
- •3. Некоторые физические свойства мембран и методы их исследования.
- •4. Общее уравнение переноса. Диффузия. Уравнение Фика.
- •Лекция № 18 транспорт веществ через биологические мембраны.
- •1. Пассивный перенос молекул (атомов) через биологические мембраны. Разновидности пассивного переноса.
- •2.Перенос ионов через мембрану. Уравнение Нернста-Планка.
- •3. Активный транспорт веществ. Молекулярная организация систем активного транспорта.
- •Лекция №19 биоэлектрические потенциалы.
- •1. Мембранные потенциалы и их ионная природа.
- •2. Потенциал покоя.
- •3. Потенциал действия.
- •4. Распространение потенциала действия по нервному волокну.
- •Лекция №20 интерференция и дифракция света. Принцип рентгеноструктурного анализа.
- •1. Интерференция световых волн. Когерентность.
- •2. Дифракция света. Дифракция света на щели в параллельных лучах.
- •3. Дифракционная решётка. Дифракционный спектр.
- •4. Дифракция электромагнитных волн на пространственных структурах. Основы рентгеноструктурного анализа.
- •2. Поляризация света при отражении и преломлении на границе двух диэлектриков.
- •3. Поляризация при двойном лучепреломлении.
- •4. Вращение плоскости поляризации. Поляриметрия.
- •5 . Поляризационный микроскоп.
- •6. Дисперсия света.
- •7. Спектральные приборы.
- •8. Спектральный анализ.
- •2. Разрешающая способность глаза. Недостатки оптической системы глаза.
- •3. Основы фотометрии.
- •4. Чувствительность глаза к свету и цвету. Адаптация.
- •5. Биофизические основы зрительной рецепции.
- •2. Разрешающая способность и полезное увеличение микроскопа.
- •3. Некоторые специальные приёмы оптической микроскопии.
- •4. Волновые свойства частиц. Электронная микроскопия.
- •5. Волоконная оптика и её применение в эндоскопии.
- •Лекция №24 тепловое излучение. Фотоэффект.
- •1. Характеристики теплового излучения. Абсолютно чёрное тело. Серые тела. Закон Кирхгофа.
- •2. Квантовый характер излучения. Формула Планка. Законы излучения абсолютно чёрного тела.
- •3. Излучение тела человека. Основы термографии.
- •4. Фотоэлектрический эффект.
- •5. Практическое применение фотоэффекта.
- •2. Фотолюминесцентный качественный и количественный анализ биологических систем.
- •3. Индуцированное излучение атомов.
- •4. Оптические квантовые генераторы (лазеры).
- •5. Основные свойства лазерного излучения, биофизический механизм его действия, применение в биологии и медицине.
- •2. Устройство рентгеновских трубок и простейшего рентгеновского аппарата.
- •3. Взаимодействие рентгеновского излучения с веществом (когерентное рассеяние, некогерентное рассеяние, фотоэффект).
- •4. Использование рентгеновского излучения в медицине (рентгеноскопия, рентгенография, рентгеновская томография, флюорография, рентгенотерапия).
- •2. Основные виды радиоактивного распада.
- •3. Методы получения радионуклидов.
- •4. Взаимодействие ионизирующего излучения с веществом.
- •5. Использование радионуклидов в медицине.
- •Лекция №28 дозиметрия ионизирующего излучения.
- •1. Поглощённая и экспозиционная дозы. Мощность дозы.
- •2. Количественная оценка биологического действия ионизирующего излучения. Эквивалентная доза. Эквивалентная эффективная доза. Коллективная доза.
- •3. Дозы естественного облучения.
- •4. Дозиметрические приборы.
- •ТестЫ для проверки знаний студентов по медицинской и биологической физике
- •1. Основные понятия высшей математики.
- •2. Механика. Акустика.
- •3. Гидродинамика и гемодинамика.
- •4. Электродинамика.
- •5. Физические процессы в биологических мембранах.
- •6. Оптика.
- •7. Тепловое излучение. Квантовая природа света.
- •8. Ионизирующее излучение. Основы дозиметрии.
- •Задачи и вопросы по медицинской и биологической физике
- •1. Механика.
- •2. Звук и его восприятие.
- •3. Течение жидкости. Особенности кровотока.
- •4. Теплопередача. Терморегуляция.
- •5. Электричество.
- •6. Оптика. А) Глаз и оптические приборы.
- •Б) Волновые свойства света. Фотометрия.
- •7. Элементы атомной и ядерной физики.
- •Ответы и решения
- •I. Механика.
- •II. Звук и его восприятие.
- •III. Течение жидкости. Особенности кровотока.
- •IV. Теплопередача. Терморегуляция.
- •V. Электричество.
- •VI. Оптика. А) Глаз и оптические приборы.
- •Б) Волновые свойства света. Фотометрия.
- •VII. Элементы атомной и ядерной физики.
- •Справочные таблицы
- •Основные физические постоянные
- •Плотность твердых тел
- •Плотность жидкостей
- •Плотность биологических субстанций
- •Плотность газов и насыщенных паров
- •6. Модуль упругости материалов
- •7. Поверхностное натяжение на границе
- •8. Скорость звука в разных веществах
- •9. Динамическая вязкость некоторых веществ
- •10. Удельные теплоемкости веществ в интервале
- •11. Удельное сопротивление при 20○с
- •12. Относительные диэлектрические проницаемости веществ
- •13. Энергия ионизации
- •14. Подвижность ионов в газах
- •15. Показатель преломления
- •16. Предельные углы внутреннего отражения
- •17. Массы некоторых изотопов
- •18. Массы и энергии покоя некоторых частиц
- •19. Периоды полураспада
- •20. Таблица значений синусов и тангенсов
- •Литература
- •Медицинская и биологическая физика Учебное пособие
- •210602, Витебск, Фрунзе, 27
- •210602, Витебск, Фрунзе, 27
3. Дозы естественного облучения.
На биосферу Земли непрерывно действует
космическое излучение, а также потоки
α-, β-частиц, γ-квантов в результате
излучения различных радионуклидов,
рассеянных в земной коре, воде подземных
источников, реках, морях, океанах, в
воздухе. Кроме того, радионуклиды входят
в состав живых организмов. Совокупность
излучений этих радиоактивных источников
называется естественным радиоактивным
излучением. Наиболее распространённые
на Земле радионуклиды – это
,
и
,
а также радионуклиды, составляющие ряд
урана.
Изотоп радона распадается и даёт α-излучение, которое сопровождается испусканием γ-фотона.
В массе стабильного
всегда содержится около 0,01% изотопа
,
ядра которого, распадаясь, образуют
,
β- и γ-излучение. Этот изотоп калия
содержится в почве, удобрениях, а также
в головном мозге, мышцах, селезёнке и
костном мозге. Так у человека массой
70кг содержится в организме около 0,021г
радионуклида
.
Период полураспада
составляет 1,3·109 лет. Легко
рассчитать, что каждую секунду в нашем
организме распадается 5·103 атомов
.
Но это не представляет для нас опасности,
и, по-видимому, является необходимым
для развития организма, так как зарождение
и развитие жизни на Земле всегда
сопровождались этим процессом.
Космическое излучение состоит из потоков
протонов, α-частиц, ядер некоторых
элементов, потоков электронов, фотонов
и нейтронов. Частицы высоких энергий,
взаимодействуя с атмосферой, образуют
в результате ядерных реакций серию
радионуклидов (
,
,
)
и потоки нейтронов и протонов. Это
вторичное излучение проникает в нижние
слои атмосферы и воздействует на
биосферу.
В результате этого природного как внешнего, так и внутреннего облучения средняя мощность дозы составляет около 2 мЗв в год (200 мбэр). Причём примерно 2/3 этой дозы (135 мбэр) человек получает от радиоактивных изотопов, попавших в организм с пищей, водой, воздухом (внутреннее облучение), и 65 мбэр от внешнего облучения. Важно отметить, что природный радиоактивный фон, оказывая влияние на развитие жизни на Земле, является неотъемлемой частью сферы обитания человека. Нарушения радиоактивного фона опасны для существования биосферы и могут привести к непоправимым последствиям.
Причиной увеличения радиоактивного
фона является деятельность человека.
Создание крупных промышленных предприятий,
энергетических источников, военной
техники и др. могут приводить к локальным
изменениям фона. Но наиболее опасными
причинами являются выбросы радиоактивных
частиц, которые могут возникнуть при
ядерных взрывах или при эксплуатации
атомных электростанций (АЭС). Так,
например, при аварии на Чернобыльской
АЭС произошли выбросы, радионуклидов:
(период полураспада Т=8 дней, даёт
γ-излучение),
(Т=29 лет, даёт β--излучение),
(T=30 лет, даёт β-- и
γ-издучения). Эти изотопы могут
накапливаться в организме, вызывая в
нём нарушения деятельности, как отдельных
органов, так и организма в целом. Так,
накапливается в щитовидной железе, и
уже 0,35 мг радиоактивного йода опасна
для жизни (ежесуточная потребность
стабильного йода около 150 мг). Изотоп
накапливается в костной ткани, а изотоп
равномерно распределяется в клетках
организма.
Предельно допустимой биологической дозой для человека при профессиональном облучении считается 5 бэр в год. Для населения установлена предельная доза в 10 раз меньшая –0,5 бэр в год. Минимальная летальная доза условно принята 600 бэр при облучении всего тела.
Иногда радиоактивный фон оценивается по мощности излучения. Так нормальный естественный фон не должен превышать 20 мкР/ч. Для районов, подвергшихся радиоактивному загрязнению в результате чернобыльской аварии были установлены нормы: для зоны эвакуации – 5 мР/ч и для зоны отчуждения – 20 мР/ч. Предельно допустимая удельная активность загрязнённой площади считается равной 15 Ки/км2. Установлены и нормы удельной активности радионуклидов в продуктах питания: зерно для хлебопродуктов 1,6·10-8 Ки/кг; мука, крупа - 1·10-8 Ки/кг; детское питание всех видов - 1·10-8 Ки/кг.
