- •Содержание
- •Предисловие
- •2. Производная сложной функции.
- •3. Производная второго порядка. Механический смысл второй производной.
- •4. Дифференциал функции.
- •5. Функции многих переменных. Частные производные и дифференциалы.
- •2. Простейшие способы интегрирования.
- •3. Определенный интеграл и его свойства.
- •4. Связь между определенным и неопределенным интегралами.
- •5. Дифференциальное уравнение.
- •Линейные однородные уравнения второго порядка с постоянными коэффициентами.
- •Лекция №3 элементы теории вероятности и математической статистики.
- •1.Случайное событие. Вероятность случайного события.
- •2. Случайные величины. Закон распределения и числовые характеристики дискретных случайных величин.
- •3. Непрерывные случайные величины. Нормальный закон распределения (закон Гаусса).
- •4. Статистическое распределение выборки. Гистограмма.
- •5. Обработка результатов прямых и косвенных измерений.
- •6. Понятие о корреляционном анализе.
- •2. Основные законы динамики вращательного движения.
- •3. Механические свойства тканей.
- •4. Биомеханические процессы в опорно-двигательном аппарате человека.
- •Незатухающие гармонические колебания.
- •Затухающие гармонические колебания.
- •Энергия колебательного движения.
- •5. Вынужденные колебания.
- •6. Сложение гармонических колебаний одинакового направления.
- •7. Сложное колебание и его гармонический спектр.
- •Лекция №6 механические волны. Акустика.
- •1. Механические волны. Уравнение волны. Волновое уравнение.
- •2. Энергия волны. Вектор Умова.
- •3. Эффект Доплера.
- •4. Природа звука. Физические характеристики звуковых волн.
- •5. Распространение звуковых волн в среде. Волновое сопротивление.
- •Лекция №7
- •Звуковые методы исследования в клинике.
- •3. Ультразвук (уз), источники уз. Особенности распространения ультразвуковых волн.
- •Медико-биологическое применение ультразвука.
- •Инфразвук (из), особенности его распространения. Действие инфразвуков на биологические объекты.
- •Лекция №8 гидродинамика вязкой жидкости.
- •1.Стационарное течение жидкости. Условие неразрывности струи.
- •2. Уравнение Бернулли и его следствия.
- •3. Вязкость жидкости. Уравнение Ньютона.
- •4. Ламинарное и турбулентное течение. Число Рейнольдса.
- •5. Течение вязкой жидкости по трубам. Формула Пуазейля. Гидравлическое сопротивление.
- •Лекция №9 физические основы гемодинамики.
- •1. Движение жидкости и крови по трубам с эластичными стенками. Кровеносная система как разветвление труб.
- •2. Распространение пульсовых волн.
- •3. Нарушения гемодинамических показателей сосудистой системы.
- •4. Модельные представления процесса кровообращения.
- •5. Работа и мощность сердца.
- •6. Физические основы клинического метода измерения давления крови.
- •2. Первое начало термодинамики.
- •3. Второе начало термодинамики.
- •4. Связь между свободной, связанной энергией и энтропией.
- •5. Основы теории открытых систем. Отличия стационарного состояния от термодинамического равновесия.
- •6. Термометрия и калориметрия.
- •7. Гипертермия и гипотермия.
- •Лекция №11 электрический диполь. Физические основы электрокардиографии.
- •1. Основные характеристики электрического поля.
- •2. Электрический диполь. Диполь в электрическом поле.
- •3. Электрическое поле диполя.
- •4. Понятие о дипольном электрическом генераторе (токовом диполе).
- •5. Физические основы электрокардиографии.
- •6. Теория отведений Эйнтховена. Вектроэлектрокардиография.
- •Лекция №12 постоянный ток. Действие постоянного тока на организм.
- •1. Электропроводимость биологических тканей и жидкостей для постоянного тока. Явление поляризации.
- •2. Механизмы действия постоянного тока на организм.
- •3. Гальванизация. Аппарат гальванизации.
- •4. Лекарственный электрофорез.
- •Лекция №13 переменный ток. Природа емкостных свойств тканей организма.
- •1. Получение переменного тока. Основные его характеристики.
- •2. Различные виды электрических сопротивлений в цепи переменного тока.
- •3. Полное сопротивление (импеданс) в цепи переменного тока. Р езонанс напряжения.
- •4. Полное сопротивление (импеданс) тканей организма. Использование метода электропроводности в медицине.
- •Лекция №14 магнитное поле. Действие магнитных полей на организм человека.
- •1. Основные характеристики магнитного поля.
- •2. Магнитные свойства вещества.
- •3. Действие магнитных полей на живые организмы.
- •4. Использование магнитных полей в медицине.
- •2. Надёжность медицинской аппаратуры.
- •3. Электробезопасность медицинской аппаратуры.
- •4. Общая схема получения, передачи и регистрации медико-биологической информации.
- •5. Электроды для съёма биоэлектрического сигнала.
- •6. Датчики медико-биологической информации.
- •Лекция №16 высокочастотная электротерапия и электрохирургия.
- •1. Воздействие радиоволн на биологические структуры.
- •2. Нагревание проводников высокочастотным током. Диатермия. Электрохирургия. Дарсонвализация.
- •3. Нагревание проводника в переменном магнитном поле. Индуктотермия.
- •4. Нагревание проводников и диэлектриков в ультравысокочастотном электрическом поле. Увч-терапия.
- •5. Микроволновая терапия.
- •2. Липидные модельные мембраны.
- •3. Некоторые физические свойства мембран и методы их исследования.
- •4. Общее уравнение переноса. Диффузия. Уравнение Фика.
- •Лекция № 18 транспорт веществ через биологические мембраны.
- •1. Пассивный перенос молекул (атомов) через биологические мембраны. Разновидности пассивного переноса.
- •2.Перенос ионов через мембрану. Уравнение Нернста-Планка.
- •3. Активный транспорт веществ. Молекулярная организация систем активного транспорта.
- •Лекция №19 биоэлектрические потенциалы.
- •1. Мембранные потенциалы и их ионная природа.
- •2. Потенциал покоя.
- •3. Потенциал действия.
- •4. Распространение потенциала действия по нервному волокну.
- •Лекция №20 интерференция и дифракция света. Принцип рентгеноструктурного анализа.
- •1. Интерференция световых волн. Когерентность.
- •2. Дифракция света. Дифракция света на щели в параллельных лучах.
- •3. Дифракционная решётка. Дифракционный спектр.
- •4. Дифракция электромагнитных волн на пространственных структурах. Основы рентгеноструктурного анализа.
- •2. Поляризация света при отражении и преломлении на границе двух диэлектриков.
- •3. Поляризация при двойном лучепреломлении.
- •4. Вращение плоскости поляризации. Поляриметрия.
- •5 . Поляризационный микроскоп.
- •6. Дисперсия света.
- •7. Спектральные приборы.
- •8. Спектральный анализ.
- •2. Разрешающая способность глаза. Недостатки оптической системы глаза.
- •3. Основы фотометрии.
- •4. Чувствительность глаза к свету и цвету. Адаптация.
- •5. Биофизические основы зрительной рецепции.
- •2. Разрешающая способность и полезное увеличение микроскопа.
- •3. Некоторые специальные приёмы оптической микроскопии.
- •4. Волновые свойства частиц. Электронная микроскопия.
- •5. Волоконная оптика и её применение в эндоскопии.
- •Лекция №24 тепловое излучение. Фотоэффект.
- •1. Характеристики теплового излучения. Абсолютно чёрное тело. Серые тела. Закон Кирхгофа.
- •2. Квантовый характер излучения. Формула Планка. Законы излучения абсолютно чёрного тела.
- •3. Излучение тела человека. Основы термографии.
- •4. Фотоэлектрический эффект.
- •5. Практическое применение фотоэффекта.
- •2. Фотолюминесцентный качественный и количественный анализ биологических систем.
- •3. Индуцированное излучение атомов.
- •4. Оптические квантовые генераторы (лазеры).
- •5. Основные свойства лазерного излучения, биофизический механизм его действия, применение в биологии и медицине.
- •2. Устройство рентгеновских трубок и простейшего рентгеновского аппарата.
- •3. Взаимодействие рентгеновского излучения с веществом (когерентное рассеяние, некогерентное рассеяние, фотоэффект).
- •4. Использование рентгеновского излучения в медицине (рентгеноскопия, рентгенография, рентгеновская томография, флюорография, рентгенотерапия).
- •2. Основные виды радиоактивного распада.
- •3. Методы получения радионуклидов.
- •4. Взаимодействие ионизирующего излучения с веществом.
- •5. Использование радионуклидов в медицине.
- •Лекция №28 дозиметрия ионизирующего излучения.
- •1. Поглощённая и экспозиционная дозы. Мощность дозы.
- •2. Количественная оценка биологического действия ионизирующего излучения. Эквивалентная доза. Эквивалентная эффективная доза. Коллективная доза.
- •3. Дозы естественного облучения.
- •4. Дозиметрические приборы.
- •ТестЫ для проверки знаний студентов по медицинской и биологической физике
- •1. Основные понятия высшей математики.
- •2. Механика. Акустика.
- •3. Гидродинамика и гемодинамика.
- •4. Электродинамика.
- •5. Физические процессы в биологических мембранах.
- •6. Оптика.
- •7. Тепловое излучение. Квантовая природа света.
- •8. Ионизирующее излучение. Основы дозиметрии.
- •Задачи и вопросы по медицинской и биологической физике
- •1. Механика.
- •2. Звук и его восприятие.
- •3. Течение жидкости. Особенности кровотока.
- •4. Теплопередача. Терморегуляция.
- •5. Электричество.
- •6. Оптика. А) Глаз и оптические приборы.
- •Б) Волновые свойства света. Фотометрия.
- •7. Элементы атомной и ядерной физики.
- •Ответы и решения
- •I. Механика.
- •II. Звук и его восприятие.
- •III. Течение жидкости. Особенности кровотока.
- •IV. Теплопередача. Терморегуляция.
- •V. Электричество.
- •VI. Оптика. А) Глаз и оптические приборы.
- •Б) Волновые свойства света. Фотометрия.
- •VII. Элементы атомной и ядерной физики.
- •Справочные таблицы
- •Основные физические постоянные
- •Плотность твердых тел
- •Плотность жидкостей
- •Плотность биологических субстанций
- •Плотность газов и насыщенных паров
- •6. Модуль упругости материалов
- •7. Поверхностное натяжение на границе
- •8. Скорость звука в разных веществах
- •9. Динамическая вязкость некоторых веществ
- •10. Удельные теплоемкости веществ в интервале
- •11. Удельное сопротивление при 20○с
- •12. Относительные диэлектрические проницаемости веществ
- •13. Энергия ионизации
- •14. Подвижность ионов в газах
- •15. Показатель преломления
- •16. Предельные углы внутреннего отражения
- •17. Массы некоторых изотопов
- •18. Массы и энергии покоя некоторых частиц
- •19. Периоды полураспада
- •20. Таблица значений синусов и тангенсов
- •Литература
- •Медицинская и биологическая физика Учебное пособие
- •210602, Витебск, Фрунзе, 27
- •210602, Витебск, Фрунзе, 27
2. Основные виды радиоактивного распада.
Под общим названием радиоактивного излучения объединяются 3 вида излучения, различных по природе, но имеющих некоторые общие свойства. Они исторически были названы альфа-, бета- и гамма-лучами.
Альфа-излучение – это поток частиц с высокой кинетической энергией. Альфа-распад состоит в самопроизвольном превращении ядра с испусканием α-частицы (ядра гелия). Схема α-распада с учётом правила смещения записывается в виде:
,
где X – символ исходного (материнского) ядра; Y – символ ядра – продукта распада (дочернее ядро).
В связи с выбрасыванием α-частицы заряд ядра и соответственно атомный номер элемента уменьшается на две единицы, а массовое число на четыре единицы. Следовательно, вторичный элемент сдвигается в таблице Менделеева на два номера влево, а атомная масса его становится меньше на четыре единицы. Примером α-распада может служить распад радия, при котором образуется радон:
.
При этом излучается γ-фотон. При α-распаде дочернее ядро может находиться не только в нормальном, но и в возбуждённом состоянии, а так как эти состояния дискретны, то и значения энергии α-частиц, вылетающих из разных ядер одного и того же радиоактивного вещества, дискретны. Энергия возбуждения дочернего ядра чаще всего выделяется в виде γ-фотона. Именно поэтому α-распад сопровождается γ-излучением. Скорость вылета α-частиц из ядра имеет значение (1,4 – 2)·107 м/с, что соответствует начальной кинетической энергии 4 – 8,8 МэВ. Альфа-частицы, испускаемые определённым элементом, составляют несколько групп с близкой энергией, поэтому спектр α-излучений состоит из нескольких близко расположенных линий.
Бета-распад происходит у ядер, неустойчивость которых связана с определённым соотношением числа протонов и нейтронов. Если в ядре имеется излишек нейтронов, то происходит электронный β-распад ядра, при котором один нейтрон превращается в протон, при этом в ядре образуется электрон:
,
где
- антинейтрино (элементарная частица).
Электрон выбрасывается из ядра и в нём
остаётся более устойчивый комплекс
нуклонов. Электронный β-распад описывается
уравнением:
.
При этом заряд
ядра, а соответственно атомный номер
элемента увеличивается на единицу, т.е.
вторичный элемент сдвигается в таблице
Менделеева на один номер вправо, массовое
его число остаётся без изменения. Пример:
.
Если в ядре излишек протонов, то происходит
позитронный β-распад, при котором один
из протонов превращается в нейтрон, при
этом в ядре образуется позитрон:
,
где ν – нейтрино.
Позитрон выбрасывается, в ядре образуется более устойчивый комплекс нуклонов. Позитронный β-распад описывается уравнением:
.
Заряд ядра, а соответственно атомный номер элемента изменяется на единицу, и вторичный элемент сдвигается в таблице Менделеева на один номер влево, массовое число его остаётся неизменным. Пример:
.
Начальная скорость и соответственно кинетическая энергия β-частиц могут значительно отличаться. Наибольшая начальная скорость имеет значение 1,6·108м/с, а энергия β-частиц может быть в пределах от десятых и сотых долей МэВ до 10-12 МэВ. Энергетический спектр β-частиц сплошной, т.е. их энергия может принимать различные значения. Для того чтобы объяснить различие в энергии β-частиц при распаде ядра одного и того же элемента, В. Паули предположил в 1939 году, что при β-распаде наряду с β-частицей из ядра выбрасываются нейтральные частицы нейтрино и антинейтрино с массой равной примерно 1/2000 массы покоя электрона и имеющие энергию, которая в сумме с энергией β-частицы составляют некоторую постоянную величину, характерную для данного вещества. Причём, эта энергия у разных ядер делится между бета- и этими частицами в разнообразных соотношениях. Это объясняет сплошной спектр β-частиц.
При испускании β-частиц, также как и при α-распаде, ядра атомов могут находиться в возбуждённом состоянии. Переход их в невозбуждённое состояние (иногда ступенчато) сопровождается испусканием γ-квантов с энергией от 0,2 до 3 МэВ. Спектр γ-излучения линейчатый. γ-излучение возникает не только при α- и β-распадах. При столкновении ядра с частицей оно может перейти в возбуждённое состояние, а затем, возвращаясь в основное состояние, излучать γ-фотон.
Существует третий вид β-распада, который
называется – электронный или e-захват.
Он заключается в том, что ядро захватывает
один из внутренних электронов, находящихся
на K, L, M оболочках, в
результате чего протон ядра превращается
в нейтрон:
.
При электронном захвате освобождается место в электронной оболочке, поэтому этот вид радиоактивности сопровождается характеристическим рентгеновским излучением.
