- •1. Виды энергоресурсов. Природные, искусственные, вторичные.
- •3. Нефть, мазут. Основные характеристики, особенности использования.
- •6. Уран и его изотопы. Основные характеристики, особенности использования.
- •7. Биомасса. Источники, виды, способы использования (сжигание, газификация, дизтопливотопливо).
- •8. Солнце, ветер, вода, низкопотенциальные природные энергоресурсы
- •9. Виды энергетических процессов: преобразование, передача энергии.
- •10. Способы управления энергетическими процессами.
- •1.Энергетические процессы
- •11. Искусственные энергоресурсы. Тепло- и электроэнергия. Способы получения, сравнительные характеристики.
- •13. Ресурсы энергоаккумулирования. Механическая энергия, энергия гравитации, тепловая, электрическая. Технологии, параметры, сравнительная характеристика.
- •14. Отходы энергоресурсов. Вторичные энергоресурсы вэр. Источники, использование.
- •17. Нефть:
- •19. Сравнительный анализ природных и искусственных энергоресурсов
- •20. Сравнительный анализ искусственных энергоресурсов: технологичность, затратность получения и использования.
- •21. Топливно-энергетический баланс рб; проблемы, задачи и перспективы развития.
- •22. Электростанции традиционные – классификация, сравнительная характеристика, виды топлива
- •23. Оборудование электростанций. Состав, функции, конструктивные особенности.
- •25. Тэс: энергоблоки, мощность, давление, температура. Основные режимы, используемые виды топлива.
- •28. Тэц, гту, пгу. Состав оборудования, конструкция, особенности технологических циклов.
- •29. Аэс: устройство, типы реакторов, параметры, режимные характеристики.
- •30. Аэс ядерный топливный цикл. Уран, твэЛы, отработавшее ядерное топливо
- •32. Безопасность аэс – в нормальных и аварийных режимах.
- •33. Аэс: новые конструктивные решения, идеология пассивной безопасности.
- •34. Причины аварии на Чернобыльской аэс.
- •35. Гэс: устройства, оборудование, виды, особенности гидроресурсов
- •37. Гаэс: устройство, работа в составе ээс.
- •38. Гидроэнергетика рб
- •39. Сравнительный анализ технологий выработки электроэнергии на: кэс, тэц, пгу.
- •40. Сравнительный анализ технологий выработки электроэнергии: кэс, аэс
- •41. Сравнительный анализ технологий выработки электроэнергии. Тэс и гэс
- •42. Электростанции беларуси: состав, проблемы, планы развития
- •43. Паротурбинные сэс башенного типа. Конструкции, параметры, недостатки.
- •44. Паротурбинные сэс: "солнечный пруд". Устройство, особенности, недостатки
- •45. Сэс на фотоэлементах
- •47. Ветряная электростанция: конструкция, принцип и режимы работы, работа в составе ээс.
- •50. Аккумуляторы энергии. Конструкции, параметры, технологии, сравнительный анализ.
- •51. Индуктивные и емкостные накопители. Конструкции, параметры, особенности.
- •52. Пневмоаккумуляторы. Инерционные и гравитационные накопители.
- •53. Тепловые аккумуляторы
- •54. Водород.
- •55. Альтернативная, нетрадиционная, зеленая энергетика: вклад в энергетику будущего.
- •56. Нетрадиционные электростанции : плюсы и минусы, ограничения
- •57. Сравнительный анализ нетрадиционных энергоисточников
- •58. Перспективы развития нетрадиционной энергетики в беларуси
- •59. Ээс: определение, элементы, состав оборудования.
- •61. Функциональные задачи и характеристики работы ээс.
- •62. Ээс: Основные параметры и режимы. Мощность, напряжение, частота
- •63. Ээс: Выработка, передача и распределение электроэнергии. Оборудование, процессы
- •64. Линии электропередач: назначение, констркции, режимы работы.
- •65. Ээс: подстанции – назначение, состав оборудования, режим работы.
- •66. Ээс: Качество электроэнергии: нормы и показатели
- •3) Несинусоидальность напряжения
- •4) Несимметрия напряжений
- •6) Провал напряжения
- •Ээс: Качество электроэнергии: источники искажения, контроль показателей, соблюдение стандарта.
- •68.Ээс. Надежность. Определение, структура категории, основные элементы.
- •69. Ээс:надежность элемента-паказатели, критерии оценки.
- •70.Ээс: надежность объектов. Критерии, параметры анализа.
- •71.Надежность системы. Устойчивость, живучесть, управляемость.
- •72. Надёжность. Источники нарушения, способы управления надёжностью элемента, объекта, системы.
- •73. Ээс: недоотпуск электроэнергии, плановый, аварийный, полное погашение, ограничение.
- •74. Ээс: недоотпуск электроэнергии, причины и последствия для поставщика и потребителя
- •75. Ээс. Управление. Предмет управления, объекты, цели и задачи управления.
- •76. Управляемость ээс
- •77. Ээс: автоматизированные системы управления (асу)
- •78. Ээс: асу технологическими процессами (асу тп) электростанций асу тп
- •79. Ээс: автоматизированная система диспетчерского управления (асду)
- •81. Ээс: управление функционированием и развитием ээс.
- •82. Ээс: управление мощностью выработки и передачи
- •83. Регулирование частоты в энергосистемах
- •85. Управляемость ээс
- •86. Экономичность ээс. Основные понятия и критерии оценки.
- •87. Ээс: экономичность ээс. Методы и способы управления.
- •88. Закон об электроэнергетике рб
81. Ээс: управление функционированием и развитием ээс.
Для ЭЭС как объекта управления характерна целевая направленность процесса функционирования. Управление режимами ЭЭС осуществляется оперативным персоналом, а также автоматическими регуляторами и устройствами противоаварийной автоматики (ПА).
УСТРОЙСТВАМИ УПРАВЛЕНИЯ РЕЖИМАМИ:
*АРЧМ (автоматическое регулирование частоты и активной мощности)
*РЗА (релейная защита и автоматика);
*ТМ (телемеханика);
*КИП и А (контрольно-измерительные приборы и автоматика);
СИСТЕМОЙ АВАРИЙНОГО УПРАВЛЕНИЯ:
*АПВ (автоматическое повторное включение);
*АРН (автоматическое регулирование напряжения);
*АРВ (автоматическое регулирование возбуждения);
*АЧР (автоматическая частота разгрузки;
*АВР (автоматическое включение резерва);
*АДС (автоматическое деление системы);
*ПАА (противоаварийная автоматика);
Управление развитием ЭЭС:
*планирование
*проектирование
*прогнозирование
Для эффективного развития обеспечить реализацию собственного инновационного процесса и эффективное управление инновациями. Наиболее эффективными управленческими инновациями для энергетических компаний в настоящее время являются: система управления производственными активами, бенчмаркинг, внедрение принципов бережливого производства, а также использование «умных» информационно-коммуникационных систем (ИКС) сбора, учета и управления производственными процессами компаний в режиме реального времени.
82. Ээс: управление мощностью выработки и передачи
Большинство электростанций объединены в энергетические системы, к каждой из которых предъявляются следующие требования:
Соответствие мощности генераторов и трансформаторов максимальной мощности потребителей электроэнергии.
Достаточная пропускная способность линий электропередач (ЛЭП).
Обеспечение бесперебойного электроснабжения при высоком качестве энергии.
Экономичность, безопасность и удобство в эксплуатации.
Для обеспечения указанных требований энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций. Диспетчерский пункт получает необходимые данные и сведения о состояниях технологического процесса на электростанциях (расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.); о работе системы – какие элементы системы (линии, трансформаторы, генераторы, нагрузки, котлы, паропроводы) в данный момент отключены, какие находятся в работе, в резерве и т.д.; об электрических параметрах режима (напряжениях, токах, активных и реактивных мощностях, частоте и т.д.).
Работа электростанций в системе даёт возможность за счёт большого количества параллельно работающих генераторов повысить надёжность электроснабжения потребителей, полностью загрузить наиболее экономические агрегаты электростанций, снизить стоимость выработки электроэнергии. Кроме того, в энергосистеме снижается установленная мощность резервного оборудования; обеспечивается более высокое качество электроэнергии, отпускаемой потребителям; увеличивается единичная мощность агрегатов, которые могут быть установлены в системе.
В России, как и во многих других странах, для производства и распределения электроэнергии применяется трёхфазный переменный ток частотой 50Гц (в США и ряде других стран 60Гц). Сети и установки трёхфазного тока более экономичны по сравнению с установками однофазного переменного тока, а также дают возможность широко использовать в качестве электропривода наиболее надёжные, простые и дешевые асинхронные электродвигатели.
Наряду с трёхфазным током в некоторых отраслях промышленности применяют постоянный ток, который получают выпрямлением переменного тока (электролиз в химической промышленности и цветной металлургии , электрифицированный транспорт и др.).
Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500кВт и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи и получается большая экономия материалов за счёт сокращения сечений проводов. Поэтому в процессе передачи и распределения электрической энергии приходится повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, т.к. его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Повышение напряжения осуществляется при помощи повышающих трансформаторов на электростанциях, а понижение – при помощи понижающих трансформаторов на подстанциях у потребителей.
