- •1. Виды энергоресурсов. Природные, искусственные, вторичные.
- •3. Нефть, мазут. Основные характеристики, особенности использования.
- •6. Уран и его изотопы. Основные характеристики, особенности использования.
- •7. Биомасса. Источники, виды, способы использования (сжигание, газификация, дизтопливотопливо).
- •8. Солнце, ветер, вода, низкопотенциальные природные энергоресурсы
- •9. Виды энергетических процессов: преобразование, передача энергии.
- •10. Способы управления энергетическими процессами.
- •1.Энергетические процессы
- •11. Искусственные энергоресурсы. Тепло- и электроэнергия. Способы получения, сравнительные характеристики.
- •13. Ресурсы энергоаккумулирования. Механическая энергия, энергия гравитации, тепловая, электрическая. Технологии, параметры, сравнительная характеристика.
- •14. Отходы энергоресурсов. Вторичные энергоресурсы вэр. Источники, использование.
- •17. Нефть:
- •19. Сравнительный анализ природных и искусственных энергоресурсов
- •20. Сравнительный анализ искусственных энергоресурсов: технологичность, затратность получения и использования.
- •21. Топливно-энергетический баланс рб; проблемы, задачи и перспективы развития.
- •22. Электростанции традиционные – классификация, сравнительная характеристика, виды топлива
- •23. Оборудование электростанций. Состав, функции, конструктивные особенности.
- •25. Тэс: энергоблоки, мощность, давление, температура. Основные режимы, используемые виды топлива.
- •28. Тэц, гту, пгу. Состав оборудования, конструкция, особенности технологических циклов.
- •29. Аэс: устройство, типы реакторов, параметры, режимные характеристики.
- •30. Аэс ядерный топливный цикл. Уран, твэЛы, отработавшее ядерное топливо
- •32. Безопасность аэс – в нормальных и аварийных режимах.
- •33. Аэс: новые конструктивные решения, идеология пассивной безопасности.
- •34. Причины аварии на Чернобыльской аэс.
- •35. Гэс: устройства, оборудование, виды, особенности гидроресурсов
- •37. Гаэс: устройство, работа в составе ээс.
- •38. Гидроэнергетика рб
- •39. Сравнительный анализ технологий выработки электроэнергии на: кэс, тэц, пгу.
- •40. Сравнительный анализ технологий выработки электроэнергии: кэс, аэс
- •41. Сравнительный анализ технологий выработки электроэнергии. Тэс и гэс
- •42. Электростанции беларуси: состав, проблемы, планы развития
- •43. Паротурбинные сэс башенного типа. Конструкции, параметры, недостатки.
- •44. Паротурбинные сэс: "солнечный пруд". Устройство, особенности, недостатки
- •45. Сэс на фотоэлементах
- •47. Ветряная электростанция: конструкция, принцип и режимы работы, работа в составе ээс.
- •50. Аккумуляторы энергии. Конструкции, параметры, технологии, сравнительный анализ.
- •51. Индуктивные и емкостные накопители. Конструкции, параметры, особенности.
- •52. Пневмоаккумуляторы. Инерционные и гравитационные накопители.
- •53. Тепловые аккумуляторы
- •54. Водород.
- •55. Альтернативная, нетрадиционная, зеленая энергетика: вклад в энергетику будущего.
- •56. Нетрадиционные электростанции : плюсы и минусы, ограничения
- •57. Сравнительный анализ нетрадиционных энергоисточников
- •58. Перспективы развития нетрадиционной энергетики в беларуси
- •59. Ээс: определение, элементы, состав оборудования.
- •61. Функциональные задачи и характеристики работы ээс.
- •62. Ээс: Основные параметры и режимы. Мощность, напряжение, частота
- •63. Ээс: Выработка, передача и распределение электроэнергии. Оборудование, процессы
- •64. Линии электропередач: назначение, констркции, режимы работы.
- •65. Ээс: подстанции – назначение, состав оборудования, режим работы.
- •66. Ээс: Качество электроэнергии: нормы и показатели
- •3) Несинусоидальность напряжения
- •4) Несимметрия напряжений
- •6) Провал напряжения
- •Ээс: Качество электроэнергии: источники искажения, контроль показателей, соблюдение стандарта.
- •68.Ээс. Надежность. Определение, структура категории, основные элементы.
- •69. Ээс:надежность элемента-паказатели, критерии оценки.
- •70.Ээс: надежность объектов. Критерии, параметры анализа.
- •71.Надежность системы. Устойчивость, живучесть, управляемость.
- •72. Надёжность. Источники нарушения, способы управления надёжностью элемента, объекта, системы.
- •73. Ээс: недоотпуск электроэнергии, плановый, аварийный, полное погашение, ограничение.
- •74. Ээс: недоотпуск электроэнергии, причины и последствия для поставщика и потребителя
- •75. Ээс. Управление. Предмет управления, объекты, цели и задачи управления.
- •76. Управляемость ээс
- •77. Ээс: автоматизированные системы управления (асу)
- •78. Ээс: асу технологическими процессами (асу тп) электростанций асу тп
- •79. Ээс: автоматизированная система диспетчерского управления (асду)
- •81. Ээс: управление функционированием и развитием ээс.
- •82. Ээс: управление мощностью выработки и передачи
- •83. Регулирование частоты в энергосистемах
- •85. Управляемость ээс
- •86. Экономичность ээс. Основные понятия и критерии оценки.
- •87. Ээс: экономичность ээс. Методы и способы управления.
- •88. Закон об электроэнергетике рб
43. Паротурбинные сэс башенного типа. Конструкции, параметры, недостатки.
Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров, на вершине которой находится резервуар с водой. Этот резервуар покрыт чёрным цветом для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты (гелиостат - зеркало площадью в несколько квадратных метров ). Основная и самая трудоемкая задача - это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар.
Параметры:
В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20%) и не высокие мощности.
Недостатки:
-) не высокие параметры пара (паратурбинный цикл)
-) большая площадь занимаемая зеркалами ( Крымская СЭС- 5 Мвт – 300 зеркал 3*2 метра )
-) необходимость адаптации положения зеркал
-) необходимость очистки поверхности зеркал
-) необходимость аккумулятора в период отсутствия Солнца.
44. Паротурбинные сэс: "солнечный пруд". Устройство, особенности, недостатки
Солнечные пруды— представляют собой небольшой бассейн глубиной в несколько метров имеющий многослойную структуру. Верхний — конвективный слой — пресная вода; ниже расположен градиентный слой с увеличивающейся книзу концентрацией рассола; в самом низу слой крутого рассола. Дно и стенки покрыты чёрным материалом для поглощения тепла. Нагрев происходит в нижнем слое, так как рассол имеет более высокую по сравнению с водой плотность увеличивающуюся при нагреве из-за лучшей растворимости соли в горячей воде, конвективного перемешивания слоёв не происходит и рассол может нагреваться до 100 °C и более. В рассольную среду помещён трубчатый теплообменник по которому циркулирует легкокипящая жидкость (аммиак, фреон и др.) и испаряется при нагреве передавая кинетическую энергию паровой турбине.
Крупнейшая электростанция подобного типа находится в Израиле, её мощность 5 Мвт, площадь пруда 250 000 м2, глубина 3 м.
1
—
слой пресной воды;
2— градиентный слой;
3— слой крутого рассола;
4— теплообменник.
Недостатки:
- большие площади и объемы пруда
- снижение характеристик пруда из-за ветра и пыли
- засоленность территории
- эксплуатация только в теплые периоды года
Достоинства:
- после окончания срока эксплуатации остается почти идеально ровная поверхность
45. Сэс на фотоэлементах
На фотоэлектрических СЭС солнечное излучение при помощи вентильных фотоэлементов преобразуется непосредственно в электрическую энергию постоянного тока. Для этого фотоэлементы собираются в виде плоских панелей в модули площадью обычно в несколько квадратных метров; чтобы получить требуемое напряжение, они соединяются между собой последовательно. Из модульных рядов путем параллельного соединения образуются секции, которые для получения требуемой мощности могут, в свою очередь, соединяться между собой параллельно. Секции или их группы присоединяют к инверторам, которые включают (обычно через трансформаторы) в электрическую сеть.
Мощность одного модуля (солнечной панели) обычно находится в пределах от 50 W до 1ООО W а число модулей на крупных фотоэлектрических СЭС может доходить до нескольких сотен тысяч. Модули могут устанавливаться в каком-либо фиксированном положении, соответствующем усредненным координатам Солнца, но используются и следящие системы, автоматически регулирующие углы наклона и (или) поворота панели Кпд таких СЭС, в зависимости от типа фотоэлементов, в настоящее время находится в пределах от 10% до 20%. В перспективе просматривается возможность создания элементов с КПД превышающим 30%. В настоящее время для снижения стоимости фотопреобразователя и повышения его общей эффективности используются системы концентрации солнечного света.— полимерная линза, монокристалические солнечные элементы, линзы Френеля -- (-- но выделяется большое количество теплоты, которую нужно эффективно отводить от солнечных батарей, точечная ориентация поверхности элемента по отношению к Солнцу). Больше перспективы просматриваются при использовании так называемых каскадных солнечных элементов с различной шириной запрещённой зоны.
