Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_1t_Word_2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.62 Mб
Скачать

Свойства света

Опытным путем установлено, что свет имеет электромагнитную природу, поэтому можно дополнить наше определение следующим образом: свет – это видимое электромагнитное излучение.

Свет может проходить сквозь прозрачные тела и вещества. Поэтому свет солнца проникает к нам через атмосферу, хотя при этом свет преломляется. А встречаясь с непрозрачными предметами, свет отражается от них, и мы можем воспринимать этот отраженный свет глазом, и таким образом видим.

Часть света при этом впитывается предметами, и они нагреваются. Темные предметы нагреваются сильнее светлых, соответственно, большая часть света впитывается ими, а отражается меньшая. Поэтому эти предметы выглядят для нас темными.

Больше всего света впитывают предметы черного цвета. Именно поэтому летом в жару не стоит одевать черные вещи, потому что можно получить тепловой удар. По этой же причине летом мамы обязательно надевают детям светлые головные уборы, которые нагреваются значительно меньше, чем волосы, имеющие более темный цвет.

Распространение света

Еще одно свойство света – это прямолинейное распространение. Свет не может огибать препятствия, поэтому за непрозрачным предметом образуется тень. Тень часто является не совсем черной, потому что туда попадают различные отраженные и рассеянные лучи света от других предметов.

Однако, если на пути распространения света возникает непрозрачная преграда, то лучи света не смогут пробиться сквозь нее. Именно поэтому возникают солнечные затмения, когда луна в своем движении оказывается между солнцем и Землей.

36

ЗАКОН ОТРАЖЕНИЯ СВЕТА. Закон отражения света был открыт экспериментально древнегреческим ученым Евклидом а)луч падающий и луч отраженный лежат в одной плоскости с перпендикуляром, восстановленным к отражающей поверхности в точке падения; б)угол отражения равен углу падения. Падающий и отраженный лучи могут меняться местами. Это свойство лучей называется обратимостью световых лучей: Если точечный объект и его изображение поменять местами, то лучевая картина отражения не изменится; изменится при этом лишь направление лучей. Различают диффузное и зеркальное отражение. диффузное отражение: Если размеры неровностей отражающей поверхности намного больше длины волны света, то отражение диффузное. Диффузное отражение света происходит от всех шероховатых поверхностей, например от стен комнаты. зеркальное отражение: Если размеры неровностей отражающей поверхности соизмеримы с длиной волны то отражение зеркальное.(зеркало) ЗАКОН ПРЕЛОМЛЕНИЯ СВЕТА.  Изменение направления распространения света при его прохождении через границу раздела двух сред называется преломлением света. Угол между преломленным лучом и перпендикуляром к границе раздела двух сред в точке падения луча называется углом преломления. — угол падения, — угол преломления.  Закон преломления света был открыт экспериментально Снеллиусом : а) падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.  б) отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред:  n2,1 -относительный показатель преломления второй среды относительно первой физический смысл : относительный показатель преломления равен отношению скоростей света в средах, на границе между которыми происходит преломление: (1) Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды. Он равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду. Пользуясь формулой (1), можно выразить относительный показатель преломления через абсолютные показатели преломления n1 и n2 первой и второй сред. Действительно, так как и где с — скорость света в вакууме, ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ.  Для демонстрации используем прибор геометрической оптики. Необходимо направить центральный луч света на полуцилиндрическую линзу со стороны ее выпуклой части по центру. В этом случае луч света проходит полуцилиндр без преломления. Поворачивая дисковый экран с полуцилиндрической линзой, получить луч, падающий под углом к горизонтальной плоскости линзы α. При выходе из полуцилиндра со стороны плоской грани луч преломляется и отклоняется от горизонтального диаметра, образуя угол преломления γ. Увеличить угол падения луча до тех пор, пока угол преломления не приблизится к прямому. Отметить, что одновременно с преломленным лучом появляется отраженный луч, который будет тем ярче, чем больше угол преломления приближается к 90˚. Преломленный луч ослабевает по яркости, пока не будет получено полное внутреннее отражение. Угол падения, при котором наступает полное внутреннее отражение, называется предельным углом полного внутреннего отражения. При переходе света из стекла в воздух этот угол приблизительно равен 40˚. При дальнейшем увеличении угла падения явление полного внутреннего отражения сохраняется.

37

ИНТЕРФЕРЕНЦИЯ  Интерференция – это сложение колебаний. В результате интерференции в каких-то точках пространства происходит рост амплитуды колебаний, а в других – их уменьшение. Неизменная картина интерференции наблюдается только тогда, когда разность складываемых колебаний постоянна (они когерентны). Очевидно, что когерентными могут быть колебания одинаковой частоты. Поэтому чаще всего изучают интерференцию монохроматических колебаний. Интерференцию световых волн можно наблюдать, если положить стеклянную линзу на стеклянную пластинку и посмотреть на них сверху. Луч света падает сверху на линзу, преломляется, отражается от её нижней искривлённой поверхности и выходит из линзы (луч 2). Однако часть луча, упавшего на нижнюю поверхность линзы, выходит из неё, падает на стеклянную пластинку, отражается от неё, проходит через линзу и выходит из неё (луч 1). Лучи 1 и 2 когерентны, т.к. они возникли из одного луча. Если попав в глаз, фаза этих лучей будет отличаться на целое число периодов, то эти лучи будут усиливать друг друга и мы увидим яркое пятно. В тех случаях, когда их разность фаз составит нечётное число полупериодов (Т/2, 3Т/2, 5Т/2 и т.д.) лучи уничтожат друг друга, и мы увидим тёмное пятно. Очевидно, что разность фаз между лучами 1 и 2 зависит от толщины зазора между линзой и пластинкой. Поэтому, смотря сверху мы увидим чередующиеся тёмные и светлые кольца – кольца Ньютона. ДИФРАКЦИЯ  Дифракцией называют явления, связанные со свойством волн огибать препятствия, т.е отклоняться от прямолинейного распространения. Любое препятствие искажает фронт распространения волн. Согласно принципу Гюйгенса границы препятствия становятся вторичными источниками волн, а их интерференция за препятствием приводит к возникновению устойчивой картины - чередования максимумов и минимумов интенсивности. Эти максимумы и минимумы называют дифракционными, т.к. они произошли в результате дифракции волн.

38

ДИСПЕРСИЯ СВЕТА. ПРИЗМАТИЧЕСКИЙ И ДИФРАКЦИОННЫЙ СПЕКТРЫ.  Диспе́рсия све́та — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее. Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации. Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде: у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна, у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

ПРИЗМАТИЧЕСКИЙ СПЕКТР  Спектр, полученный при разложении сложного света призмой на составляющие цвета. ДИФРАКЦИОННЫЙ СПЕКТР Если на дифракционную решетку будет падать немонохроматический свет, то все дифракционные максимумы, кроме центрального, для лучей разного цвета разложатся в спектр. Центральный максимум (m = 0) для всех длин волн будет совпадать при j = 0. Максимумы первого порядка (m = 1) будут для фиолетовых лучей расположены ближе к центру, чем для красных. Между ними расположатся максимумы промежуточных цветов, и мы будем наблюдать дифракционный спектр первого порядка. Между нулевым и первым порядками спектра расположена практически темная зона очень слабых вторичных максимумов. Такая же темная зона расположена между красным концом спектра первого порядка и фиолетовым краем спектра второго порядка Благодаря узости дифракционных максимумов решетки различные цвета почти не накладываются друг на друга. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т.е. дифракционная решетка может быть использована как спектральный прибор. Для этогорешетка D помещается на столике гониометра и освещается параллельным пучком света из коллиматора К .Разложенный дифракционной решеткой в спектр свет регистрируется фотоприемником r или наблюдается в зрительную трубу. Угол φ можно изменять и определять по шкале гониометра.

39

РАЗЛИЧНЫЕ ВИДЫ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, ИХ СВОЙСТВА И ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ.

Инфракрасное излучение.Электромагнитное излучение с частотами в диапазоне от 3 • 1011до 3,75 • 1014Гц называется инфракрасным излучением. Его испускает любое нагретое тело даже в том случае, когда оно не светится. Например, батареи отопления в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел. Поэтому инфракрасные волны часто называют тепловыми.

Не воспринимаемые глазом инфракрасные волны имеют длины волн, превышающие длину волны красного света (длина волны ν = 780 нм — 1 мм).

Инфракрасное излучение применяют для сушки лакокрасочных покрытий, овощей, фруктов и т. д. Созданы приборы, в которых не видимое глазом инфракрасное изображение объекта преобразуется в видимое. Изготовляются бинокли и оптические прицелы, позволяющие видеть в темноте.

Ультрафполетовое излучение. Электромагнитное излучение с частотами в диапазоне от 8 • 1014до 3 • 1016Гц называется ультрафиолетовым излучением (длина волны ν = 10—380 нм).

Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом. Экран начинает светиться в той части, на которую падают лучи, лежащие за фиолетовой областью спектра.

Ультрафиолетовое излучение отличается высокой химической активностью. Повышенную чувствительность к ультрафиолетовому излучению имеет фотоэмульсия. В этом можно убедиться, спроецировав спектр в затемненном помещении на фотобумагу. После проявления бумага почернеет за фиолетовым концом спектра сильнее, чем в области видимого спектра.

Ультрафиолетовые лучи не вызывают зрительных образов: они невидимы. Но действие их на сетчатку глаза и кожу велико и разрушительно. Ультрафиолетовое излучение Солнца недостаточно поглощается верхними слоями атмосферы. Поэтому высоко в горах нельзя оставаться длительное время без одежды и без темных очков. Стеклянные очки, прозрачные для видимого спектра, защищают глаза oт ультрафиолетового излучения, так как стекло сильно поглощают ультрафиолетовые лучи.

Впрочем, в малых дозах ультрафиолетовые лучи оказывают целебное действие. Умеренное пребывание на солнце полезно, особенно в юном возрасте: ультрафиолетовые лучи способствуют росту и укреплению организма. Кроме прямого действия на ткани кожи (образование защитного пигмента — загара, витамина D2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.

Ультрафиолетовые лучи оказывают также бактерицидное действие. Они убивают болезнетворные бактерии и используются с этой целью в медицине.

Нагретое тело испускает преимущественно инфракрасное излучение с длинами волн, превышающими длины волн видимого излучения. Ультрафиолетовое излучение — более коротковолновое и обладает высокой химической активностью.

Рентгеновское излучение — это излучение с частотами в диапазоне от 3 • 1016до 3 • 1020Гц. Рентген Вильгельм (1845—1923)— немецкий физик, обнаруживший в 1895 г. коротковолновое электромагнитное излучение — рентгеновские лучи.

Свойства рентгеновских лучей.Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от каких-либо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения.

Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые излучаются при резком торможении электронов. Большая проникающая способность рентгеновских лучей и прочие их особенности связывались с малой длиной волны. По эта гипотеза нуждалась в доказательствах, и доказательства были получены спустя 15 лет после смерти Рентгена.

Применение рентгеновских лучей. Рентгеновские лучи широко используют на практике.

В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний.

40

41

ВНЕШНИЙ ФОТОЭФФЕКТ. ЗАКОНЫ ВНЕШНЕГО ФОТОЭФФЕКТА. Фотоэлектрические явления возникают при поглощении веществом электромагнитного излучения оптического диапазона. К этим явлениям относится и внешний фотоэффект. Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света. Явление внешнего фотоэффекта открыто в 1887 г. Герцем, а детально исследовано Столетовым. Теория фотоэффекта на основе квантовых представлений создана Эйнштейном. Явление фотоэффекта получило широкое практическое применение. Приборы, в основе принципа действия которых лежит фотоэффект, называются фотоэлементами. Фотоэлементы, использующие внешний фотоэффект, преобразуют энергию излучения в электрическую лишь частично. Так как эффективность преобразования небольшая, то в качестве источников электроэнергии фотоэлементы не используют, но зато применяют их в различных схемах автоматики для управления электрическими цепями с помощью световых пучков. Внутренний фотоэффект используют в фоторезисторах. Вентильный фотоэффект, возникающий в полупроводниковых фотоэлементах с p-n переходом, используется для прямого преобразования энергии излучения в электрическую энергию (солнечные батареи). Законы внешнего фотоэффекта Обобщение экспериментальных результатов привело к установлению ряда законов фотоэффекта: Фототок насыщения пропорционален световому потоку, падающему на металл Iн ~ Ф Кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит от его частоты. Для каждого вещества существует определенное значение частоты n0, называемое красной границей фотоэффекта. Фотоэффект имеет место только при частотах n > n0, Если же n < n0, то фотоэффект не происходит при любой интенсивности света. Фотоэффект безинерционен. С начала облучения металла светом до начала вылета фотоэлектронов проходит время t < 10-9с.

43

ВНУТРЕННИЙ ФОТОЭФФЕКТ. ТЕХНИЧЕСКИЕ УСТРОЙСТВА, ОСНОВАННЫЙ НА УСТРОЙСТВЕ ФОТОЭФФЕКТА.  Технические устройства, основанные на использовании фотоэффекта Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Фотоэлементы, действие которых основано на внешнем фотоэффекте, имеют следующее устройство (рис. 1 а). Внутренняя поверхность стеклянного баллона, из которого выкачан воздух, покрыта светочувствительным слоем К с небольшим прозрачным для света участком для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А. От электродов К к А сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету (изготовляют и фотоэлементы, чувствительные только к ультрафиолетовым лучам). Свет, падающий на катод, вырывает из его поверхности электроны, что приводит к увеличению тока, протекающего в цепи и напряжения на резисторе R. Изменение тока, текущего через фотоэлемент при его освещении можно использовать для включения и выключения различных устройств.

44

СТРОЕНИЕ АТОМА: ПЛАНЕТАРНАЯ МОДЕЛЬ И МОДЕЛЬ БОРА. ПОГЛОЩЕНИЕ И ИСПУСКАНИЕ СВЕТА АТОМОМ. ПРИНЦИП ДЕЙСТВИЯ И ИСПОЛЬЗОВАНИЕ ЛАЗЕРА.  МОДЕЛЬ БОРА И ПОГЛОЩЕНИЕ,ИСПУСКАНИЕ СВЕТА (ШЕСТЬ ФОТО)  ПРИНЦИП ДЕЙСТВИЯ ЛАЗЕРА. Лазеры обычно называют оптическими квантовыми генераторами. Уже из этого названия видно, что в основе работы лазеров лежат процессы, подчиняющиеся законам квантовой механики. Согласно квантово-механическим представлениям, атом, как, впрочем, и другие частицы (молекулы, ионы и др.) поглощают и излучают энергию определёнными порциями – квантами. При обычных условиях в отсутствии каких-либо внешних воздействий атом находится в невозбуждённом состоянии, соответствующем наиболее низкому из возможных энергетическому уровню. В таком состоянии атом не способен излучать энергию. При поглощении кванта энергии атом переходит на более высокий энергетический уровень, то есть возбуждается. Переход атома с одного энергетического уровня на другой происходит дискретно, минуя все промежуточные состояния. Время нахождения атома в возбуждённом состоянии ограничено и в большинстве случаев невелико. Излучая энергию атом переходит снова в основное состояние. Этот переход осуществляется самопроизвольно, в отличие от процесса поглощения квантов, которое является вынужденным (индуцированным). Лазеры генерируют излучение в инфракрасной, видимой и ультрафиолетовой областях спектра, что соответствует диапазону электромагнитных волн, называемому светом. В связи с этим наиболее интересным представляется рассмотрение механизма взаимодействия атомов именно с этой частью спектра электромагнитных излучений. Свет, как известно, имеет двойственную природу: с одной стороны – это волна, характеризующаяся определённой частотой, амплитудой и фазой колебаний, с другой стороны – поток элементарных частиц, называемых фотонами. Каждый фотон представляет собой квант световой энергии. Энергия фотона прямо пропорциональна частоте световой волны, которая, в свою очередь, определяет цвет светового излучения. Поглощая фотон, атом переходит с более низкого энергетического уровня на более высокий. При самопроизвольном переходе на более низкий уровень атом испускает фотон. Для атомов конкретного химического элемента разрешены только совершенно определённые переходы между энергетическими уровнями. В следствие этого атомы поглощают только те фотоны, энергия которых в точности соответствует энергии перехода атома с одного энергетического уровня на другой. Визуально это проявляется в существовании для каждого химического элемента индивидуальных спектров поглощения, содержащих определённый набор цветных полос. Фотон, испускаемый атомом при переходе на более низкий энергетический уровень, так же обладает совершенно определённой энергией, соответствующей разности энергий между энергетическими уровнями. По этой причине атомы способны излучать световые волны только определённых частот. Этот эффект наглядно проявляется при работе люминесцентных ламп, часто используемых в уличной рекламе. Полость такой лампы заполнена каким-либо инертным газом, атомы которого возбуждаются ультрафиолетовым излучением, которое возникает при пропускании электрического тока через специальный слой, покрывающий внутреннюю поверхность оболочки лампы. Возвращаясь в основное состояние атомы газа дают свечение определённого цвета. Так, например, неон даёт красное свечение, а аргон – зелёное. Самопроизвольные (спонтанные) переходы атомов с более высокого энергетического уровня на более низкий носят случайный характер. Генерируемое при этом излучение не обладает свойствами лазерного излучения: параллельностью световых пучков, когерентностью (согласованностью амплитуд и фаз колебаний во времени и пространстве), монохромностью (строгой одноцветностью). Однако, ещё в 1917 году Альберт Эйнштейн предсказал существование наряду со спонтанными переходами на более низкий энергетический уровень индуцированных переходов. В последствии эта возможность была реализована в конструкции лазеров.

Сущность этого явления состоит в том, что фотон светового потока, встречая на своём пути возбуждённый атом выбивает из него фотон с точно такими же характеристиками. В результате число одинаковых фотонов удваивается. Вновь образовавшийся фотон, в свою очередь, способен генерировать ещё один фотон, выбивая его из другого возбуждённого атома. Таким образом, число одинаковых фотонов лавинообразно нарастает. Генерируемое при этом излучение характеризуется высокой степенью параллельности пучков светового потока, когерентности и монохромности, так как в нём присутствуют только те фотоны, которые обладают одинаковой энергией и направлением движения. Очевидно, что индуцированное излучение может возникать только в тех системах, где число возбуждённых атомов достаточно велико. На практике число возбуждённых атомов должно превышать 50% от общего числа атомов в системе. В равновесных системах достижение этого условия невозможно, так как число переходов с ниже лежащего уровня на выше лежащий равно числу обратных переходов. Для получения эффекта индуцированного излучения систему необходимо перевести в неравновесное, а, следовательно, неустойчивое состояние. Кроме того интенсивность внешнего светового потока, предоставляющего исходные фотоны для начала процесса так же должна быть достаточной. Рассмотрим каким образом реализуются эти требования на примере конструкции лазера, построенного с использованием искусственно выращенного кристалла рубина, называемого, обычно, рубиновым лазером. Лазер состоит из трех основных частей: активного (рабочего) вещества, резонансной системы, представляющей две параллельные пластины с нанесенными на них отражающими покрытиями, и системы возбуждения (накачки), в качестве которой обычно используется ксеноновая лампа-вспышка с источником питания ОБЛАСТИ ПРИМЕНЕНИЯ ЛАЗЕРОВ Уникальные свойства лазерного луча, многообразие конструкций современных лазеров и устройств на их основе обуславливают широкое применение лазерных технологий в различных областях человеческой деятельности: промышленности, науке, медицине и быту. Появление лазеров и внедрение их во многие отрасли промышленности и науки произвело в этих отраслях в буквальном смысле революцию. Благодаря этому стало возможным развитие новых более эффективных технологий, повышение производительности труда, точности измерений и качества обработки материалов. Рассмотрим здесь лишь наиболее важные области применения лазерной техники.

45

СПОСОБЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЗАРЯЖЕННЫХ ЧАСТИЦ. РАДИОАКТИВНОСТЬ. Способы регистрации заряженных частиц В развитии знаний о «микромире», в частности в изучении явлений радиоактивности, исключительную роль сыграли приборы, позволяющие регистрировать ничтожное действие одной-единственной частицы атомных размеров. Одним из таких замечательных приборов является камера Вильсона, делающая видимыми траектории отдельных быстродвижущихся заряженных частиц (§ 212). Другой прибор этого рода, с примитивной формой которого мы познакомились в § 203, это — так называемый счетчик сцинтилляций. При бомбардировке некоторых люминесцирующих веществ (сернистый цинк, нафталин и др.) быстрыми заряженными частицами наблюдается, что заметная доля энергии тормозящихся в них заряженных частиц превращается в видимый свет: попадание быстрой заряженной частицы на слой такого вещества вызывает кратковременную вспышку света, называемую сцинтилляцией. Яркость вспышки особенно велика в случае частиц, так как частица тормозится на пути длины менее , и выделяющаяся световая энергия оказывается сосредоточенной в ничтожном объеме. Сцинтилляции, вызываемые частицами в экране из сернистого цинка, могут быть обнаружены глазом. Простейший прибор, служащий для этой цели,— спинтарископ — изображен на рис. 382. Однако визуальный (при помощи глаза) способ наблюдения сцинтилляций крайне утомителен. В настоящее время для счета сцинтилляций пользуются особо чувствительными фотоэлементами (см. § 185) — так называемыми фотоэлектронными умножителями, изобретенными советским физиком Л. А. Кубецким. Сцинтилляции, производимые и частицами, гораздо слабее свечения, вызываемого частицами; они недоступны глазу, и регистрация их производится только с помощью фотоэлектронных умножителей Очень распространенным прибором для регистрации отдельных заряженных частиц  является газоразрядный счетчик Гейгера—Мюллера. Газоразрядный счетчик (рис. 383) представляет собой металлический цилиндр 2, но оси которого натянута тонкая проволока 1, изолированная от цилиндра. Цилиндр заполняется специальной смесью газов (например, аргон + пары спирта) до давления На нить подается положительный потенциал порядка относительно цилиндра. Прохождение каждой ионизующей частицы через счетчик вызывает в нем кратковременную вспышку газового разряда. При этом по цепи счетчика проходит кратковременный импульс тока. Если сопротивление достаточно велико , то потенциал нити сохраняется сниженным в течение нескольких миллисекунд, и этот импульс можно обнаружить по отбросу чувствительного электрометра 4. На практике импульс тока, вызванный прохождением заряженной частицы через счетчик, усиливают транзисторным или электронно-ламповым усилителем и регистрируют по передвижению стрелки присоединенного к усилителю электромагнитного нумератора (рис. 384) или с помощью электронного цифрового индикатора.

РАДИОАКТИВНОСТЬ

(от лат. radio - излучаю и activus-действенный), самопроизвольное превращение нестабильных атомных ядер в др. ядра, сопровождающееся испусканием частиц, а также жесткого электромагн. излучения (рентгеновского или g-излучения). Ядра нового нуклида, к-рые образуются в результате радиоактивного распада исходного нуклида (радионуклида), м. б. стабильными или радиоактивными.

46

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]