- •21. Регуляция ферментативных процессов. Пути и механизмы регуляции:
- •22. Циклические нуклеотиды (цАмф, цГмф) как регуляторы ферментативных
- •23. Энзимопатии – врожденные (наследственные) дефекты метаболизма
- •24. Энзимодиагностика патологических процессов и заболеваний.
- •25. Энзимотерапия – применение ферментов, их активаторов и ингибиторов в
- •26. Принципы и методы выявления ферментов в биообъектах. Единицы измерения
- •27. Обмен веществ (метаболизм) - общие закономерности протекания
- •30. Энергетический баланс цикла трикарбоновых кислот. Физиологичное значение
- •40. Окислительное декароксилирование пирувата. Ферменты, коферменты и
- •41. Сравнительная характеристика биоэнергетики аэробного и анаэробного
- •42. Фосфоролитический путь расщепления гликогена в печени и мышцах.
- •43. Биосинтез гликогена: ферментативные реакции, физиологичное значение.
- •1. Утворення нуклеотидцукру-попередника.
- •2. Формування нерозгалужених ланцюгів глікогену.
- •45. Роль адреналина, глюкагона и инсулина в гормональной регуляции обмена
- •44. Механизмы реципрокной регуляции гликогенолиза и гликогенеза за счет
- •47. Глюконеогенез: субстраты, ферменты и физиологичное значение процесса.
- •48. Глюкозо-лактатный (цикл Кори) и глюкозо-аланиновый циклы.
- •50. Гормональная регуляция концентрации и обмена глюкозы крови.
- •51. Пентозофосфатный путь окисления глюкозы: схема процесса и биологическое значение.
- •52 Метаболические пути превращения фруктозы и галактозы; наследственные
- •53. Катаболизм триацилглицеролов в адипоцитах жировой ткани:последовательность реакций, механизмы регуляции активности триглицеридлипазы.
- •54. Нейрогуморальная регуляция липолиза при участии адреналина,
- •55. Реакции окисления жирных кислот (ß-окисление); роль карнитина втранспорте жирных кислот в митохондрии.
- •56. Окисление глицерола: ферментативные реакции, биоэнергетика.
- •57. Кетоновые тела. Реакции биосинтеза и утилизации кетоновых тел,
- •58. Нарушение обмена кетоновых тел в условиях патологии (сахарный диабет,голодание).
- •59. Биосинтез высших жирных кислот: реакции биосинтеза насыщенных жирных
- •60 Синтез Мононенасичених і полі- жирних кислот 1. Мононенасичені жирні кислоти
- •2. Поліненасичені жирні кислоти
- •62.Метаболізм сфінголіпідів. Сфінголіпідози.
- •63. Біосинтез холестеролу: схема реакцій, регуляція синтезу холестеролу.
- •64. Шляхи біотрансформації холестерину.
- •Трансамінування амінокислот
- •Біосинтез сечовини
Біосинтез сечовини
синтез сечовини відбувається з аміаку та вугільної кислоти в результаті циклічного процесу, в якому каталітичну роль відіграють амінокислоти аргінін,орнітин та цитрулін (орнітиновий цикл Кребса-Хензелайта):
джерелами двох аміногруп, що використовуються для утворення молекули сечовини, є аміак, який вивільняється при окислювальному дезамінуванні L-глутамату, та аміногрупа амінокислоти L-аспартату.
Генетичні дефекти ферментів синтезу сечовини
Існують спадкові ензимопатії, спричинені повним або частковим дефектом утворення в печінці окремих ферментів циклу сечовиноутворення. Найбільш важкими клінічними проявами характеризуються порушення синтезу карбамоїлфосфатсинтетази та орнітинкарбамоїлтрансферази. Діти з такими генетичними дефектами страждають вираженою енцефалопатією, прояви якої дещо послаблюються в умовах повного виключення споживання харчових білків.
74.
Глюкогенні амінокислоти
L-Амінокислоти, що метаболізуються в циклі трикарбонових кислот можуть включати свої вуглецеві скелети в молекули глюкози. Ці амінокислоти,використання яких у синтезі глюкози реалізується після їх входження в ЦТК через ацетил-КоА, α-кетоглутарат, сукциніл-КоА та фумарат, отримали назву глюкогенних амінокислот.
Кетогенні амінокислоти
Дві L-амінокислоти включаються в катаболізм тільки через ацетоацетил-КоА, який у клітинах печінки може перетворюватися на кетонові тіла ацетоацетат та β-гідроксибутират. Це — кетогенні амінокислоти. Деякі амінокислоти віддають свої вуглецеві фрагменти на утворення як глюкози, так і кетонових тіл.
Кетогенез із амінокислот має особливе негативне значення при деяких порушеннях ферментних процесів, зокрема при некомпенсованому цукровому діабеті,у зв’язку з чим таким хворим рекомендується обмежувати надходження кетогенних амінокислот у складі продуктів харчування.
75.
Креатин — азотиста сполука, яка у вигляді креатинфосфату має важливе значення в енергозабезпеченні функції м’язів. Біосинтез креатину відбувається за участю амінокислот гліцину, аргініну та метіоніну. Процес синтезу складається з двох стадій:
1-ша стадія — відбувається в нирках і полягає в утворенні глікоціаміну (гуанідинацетату) із аргініну та гліцину (фермент гліцинамідинотрансфераза):
Фосфорилювання креатину при дії креатинфосфокінази генерує креатинфосфат — джерело термінової регенерації АТФ при м’язовому скороченні. Незворотна неферментативна дегідратація і дефосфорилювання креатин фосфату призводить до утворення ангідриду креатину — креатиніну.У формі креатиніну з організму людини виділяється із сечею значна частина азоту амінокислот; у здорової людини виділення креатиніну пропорційне масі м’язової тканин і значно збільшується за умов травматичних пошкоджень м’язів.
76.
Глутатіон — трипептид γ-глутамініл-цистеїніл-гліцин, що має в своєму складі вільну сульфгідрильну групу:
Глутатіон міститься в клітинах тваринного організму у високій концентрації. Глутатіон зворотно перетворюється з відновленої
(Г–SH) до окисленої (Г–S–S–Г) форми, відіграючи роль буфера SH-груп.Біохімічна функція глутатіону в організмі пов’язана з відновленням і детоксикацією органічних пероксидів — похідних пероксиду водню НО–ОН, у молекулі якого один (гідропероксиди) або обидва атоми водню (алкілпероксиди) заміщені на алкільні радикали.
77.
Шляхи метаболізму фенілаланіну
1.Катаболічний шлях обміну полягає у втраті фенілаланіном аміногрупи (в реакції трансамінування) з утворенням фенілпірувату та кінцевого метаболіту фенілацетату, що екскретується з організму.
2. Шлях синтезу фізіологічно активних сполук починається з перетворення фенілаланіну на тирозин при дії ферменту фенілаланінгідроксилази з подальшим перетворенням тирозину.
Шляхи метаболізму тирозину
1. Катаболічний шлях обміну полягає у трансамінуванні тирозину і перетворенні на p-оксифенілпіруват, який окислюється до гомогентизинової кислоти у складній реакції, коферментну роль у якій виконує аскорбінова кислота(вітамін С); подальші перетворення полягають в окисленні гомогентизату до фумарилацетоацетату (фермент оксидаза гомогентизинової кислоти) та розщепленні фумарилацетоацетату до фумарату та ацетоацетату
2. Шлях синтезу катехоламінів та меланінів (пігментів шкіри). Шлях починається з окислення тирозину за участю специфічної гідроксилази до 3,4-діоксифенілаланіну (ДОФА), на рівні якого відбувається дивергенція двох обмінних шляхів: утворення катехоламінів (через декарбоксилювання до дофаміну) та меланінів (через окислення тирозиназою до дофахінону).
3. Шлях синтезу тиреоїдних гормонів — реалізується в клітинах щитовидної
залози і полягає в утворенні йодованих тиронінів.
78.
Фенілкетонурія — ензимопатія, спричинена генетичним дефектом синтезу фенілаланінгідроксилази. Внаслідок блокування утворення тирозину з фенілаланіну останній в збільшеній кількості надходить на шлях утворення фенілпірувату та фенілацетату, які в надмірних концентраціях накопичуються в організмі хворих.
Патологія проявляє себе ранніми порушеннями психічного розвитку дитини —фенілпіровиноградна олігофренія.
Алкаптонурія — ензимопатія, що викликана генетично детермінованою недостатністю ферменту оксидази гомогентизинової кислоти. Характерним проявом захворювання є надмірне виділення гомогентизинової кислоти із сечею, яка при додаванні лугів набуває темного забарвлення; акумуляція гомогентизату в тканинах суглобів призводить до розвитку артритів.
Альбінізм — ензимопатія, біохімічною основою якої є спадкова недостатність ферменту тирозинази, що каталізує реакції, необхідні для утворення чорних пігментів меланінів. Відсутність меланінів у меланоцитах шкіри проявляється недостатньою (або відсутньою) пігментацією шкіри та волосся, підвищеною чутливістю шкіри до сонячного світла, порушенням зору.
79.
Порфірини та їх комплекси з металами — металопорфірини — є простетичними групами багатьох гемопротеїнів — білків, які беруть участь в окислювально-відновлювальних реакціях у тваринних та рослинних клітинах. Представниками гемопротеїнів, що містять металопорфіринові групи, є Fe2+-вмісні гемоглобін і міоглобін (О2— запасаючий білок
м’язів).
Порфірини — сполуки циклічної будови, основою структури яких є ароматична гетероциклічна система — порфін. Порфін, в свою чергу, є тетрапіролом, який утворюється при сполученні між собою метенільними (–СН=) містками чотирьох кілець азотистого гетероциклу піролу.
Синтез порфіринів
