- •21. Регуляция ферментативных процессов. Пути и механизмы регуляции:
- •22. Циклические нуклеотиды (цАмф, цГмф) как регуляторы ферментативных
- •23. Энзимопатии – врожденные (наследственные) дефекты метаболизма
- •24. Энзимодиагностика патологических процессов и заболеваний.
- •25. Энзимотерапия – применение ферментов, их активаторов и ингибиторов в
- •26. Принципы и методы выявления ферментов в биообъектах. Единицы измерения
- •27. Обмен веществ (метаболизм) - общие закономерности протекания
- •30. Энергетический баланс цикла трикарбоновых кислот. Физиологичное значение
- •40. Окислительное декароксилирование пирувата. Ферменты, коферменты и
- •41. Сравнительная характеристика биоэнергетики аэробного и анаэробного
- •42. Фосфоролитический путь расщепления гликогена в печени и мышцах.
- •43. Биосинтез гликогена: ферментативные реакции, физиологичное значение.
- •1. Утворення нуклеотидцукру-попередника.
- •2. Формування нерозгалужених ланцюгів глікогену.
- •45. Роль адреналина, глюкагона и инсулина в гормональной регуляции обмена
- •44. Механизмы реципрокной регуляции гликогенолиза и гликогенеза за счет
- •47. Глюконеогенез: субстраты, ферменты и физиологичное значение процесса.
- •48. Глюкозо-лактатный (цикл Кори) и глюкозо-аланиновый циклы.
- •50. Гормональная регуляция концентрации и обмена глюкозы крови.
- •51. Пентозофосфатный путь окисления глюкозы: схема процесса и биологическое значение.
- •52 Метаболические пути превращения фруктозы и галактозы; наследственные
- •53. Катаболизм триацилглицеролов в адипоцитах жировой ткани:последовательность реакций, механизмы регуляции активности триглицеридлипазы.
- •54. Нейрогуморальная регуляция липолиза при участии адреналина,
- •55. Реакции окисления жирных кислот (ß-окисление); роль карнитина втранспорте жирных кислот в митохондрии.
- •56. Окисление глицерола: ферментативные реакции, биоэнергетика.
- •57. Кетоновые тела. Реакции биосинтеза и утилизации кетоновых тел,
- •58. Нарушение обмена кетоновых тел в условиях патологии (сахарный диабет,голодание).
- •59. Биосинтез высших жирных кислот: реакции биосинтеза насыщенных жирных
- •60 Синтез Мононенасичених і полі- жирних кислот 1. Мононенасичені жирні кислоти
- •2. Поліненасичені жирні кислоти
- •62.Метаболізм сфінголіпідів. Сфінголіпідози.
- •63. Біосинтез холестеролу: схема реакцій, регуляція синтезу холестеролу.
- •64. Шляхи біотрансформації холестерину.
- •Трансамінування амінокислот
- •Біосинтез сечовини
Трансамінування амінокислот
Реакції транс амінування полягають у переносі α-аміногрупи від амінокислоти на α-вуглецевий атом α-кетокислоти — акцептора аміногрупи (здебільшого — α-кетоглутарату); в результаті реакції утворюється α-кетоаналог вихідної амінокислоти та нова амінокислота (в разі використання як акцептора α-кетоглутарату — L-глутамат):
Ферменти, що каналізують реакції трансамінування, — амінотрансферази (трансамінази).
Реакції трансамінування, що каталізуються амінотрансферазами, активно перебігають в печінці, скелетних м’язах, міокарді, головному мозку, нирках. Визначення активності аланінамінотрансферази (аланінової трансамінази — АлТ) та аспартатамінотрансферази (аспарагінової трансамінази — АсТ) широко застосовується з метою діагностики пошкоджень внутрішніх органів.
Механізм дії амінотрансфераз
Амінотрансферази є складними білками-ферментами, простетичною групою в яких є коферментні форми вітаміну В6 (піридоксину, піридоксолу) — піридоксальфосфат (ПАЛФ) та піридоксамінфосфат (ПАМФ), що утворюється з ПАЛФ у процесі переносу аміногрупи.
70.
Пряме дезамінування
Перший етап — утворення α-іміноглутарату — каталізується ферментом НАД-
залежною глутаматдегідрогеназою, що локалізована в мітохондріях; другий етап —
утворення α-кетоглутарату — є неферментативним. α-Кетоглутарат, що утворився,
окислюється в циклі трикарбонових кислот, а аміак поглинається ферментативною системою синтезу сечовини.
Зворотний процес — відновлювальне амінування α-кетоглутарату до L-глута-
мату — може перебігати в цитозолі при участі цитозольної НАДФ-залежної
глутаматдегідрогенази і бути допоміжним механізмом зв’язування аміаку.
Непряме дезамінування - дезамінування вільних L-амінокислот за механізмом спряження реакцій трансамінування зα-кетоглутаратом і окислювального дезамінування L-глутамату
71.
Реакція декарбоксилювання амінокислот полягає у відщепленні діоксину вуглецю від молекули амінокислоти з утворенням амінів (біогенних амінів), значна частина яких має високу фізіологічну активність як гормони, нейромедіатори, є їх попередниками або метаболітами:
Фізіологічне значення декарбоксилювання амінокислот
Утворення фізіологічно активних сполук — гормонів, медіаторів.
Катаболізм амінокислот у процесі гниття білків у кишечнику.
Окислення біогенних амінів
Накопичення біогенних амінів в організмі спричиняє несприятливі патофізіологічні зміни з боку серцево-судинної системи, кишечника, інших гладеньком’язових органів. Знешкодження (детоксикація) фізіологічно активних амінів відбувається в клітинах печінки при участі моноамінооксидази мітохондрій — ФАД-залежного ферменту, що спричиняє окислювальне дезамінування амінів до альдегідів:
Альдегіди — продукти дезамінування біогенних амінів окислюються до відповідних кислот і підлягають подальшій окислювальній деградації або екскретуються з організму із сечею. Аміак надходить у систему синтезу сечовини.
72.
Шляхи утворення аміаку в організмі людини
1. Головним у кількісному відношенні джерелом накопичення аміаку в організмі людини є окислювальне дезамінування амінокислот, тобто білковий катаболізм: азот сечовини — кінцевого азотовмісного продукту деградацію білків — складає близько 90 % всього азоту, що екскретується. Додатковими джерелами ендогенного аміаку є реакції дезамінування біогенних амінів, азотистих основ, які утворюються при катаболізмі нуклеотидів.
2. Утворення аміаку в головному мозку
Основним джерелом утворення аміаку в тканині головного мозку є реакція гідролітичного дезамінування АМФ до інозинмонофосфату (ІМФ), що каталізується аденозиндезаміназою:
Механізми знешкодження аміаку
Залежно від молекулярної форми, у вигляді якої екскретуються кінцеві продукти азотистого(амінного) катаболізму, існує три типи тваринних організмів:
1) амоніотелічні організми — такі, що виводять амінний азот у вигляді розчин-
ного іону амонію (до них належить більшість хребетних, що мешкають у воді);
2) урикотелічні організми — такі, що виводять амінний азот у вигляді сечової
кислоти (птахи, наземні рептилії);
3) уреотелічні організми — основним продуктом знешкодження та екскрету-
вання аміаку у яких є сечовина (більшість наземних хребетних, включаючи
ссавців, зокрема організм людини).
73.
