- •1 Предмет механики
- •2 Основные понятия механики
- •3 Кинематика
- •4 Равномерное движение
- •5 Равноускоренное движение
- •Примеры решения задач.
- •2 Взаимосвязь между линейными и угловыми величинами
- •3 Система кинематических уравнений, описывающих равнопеременное движение по окружности
- •4 Система кинематических уравнений, описывающих движение тела, брошенного под углом к горизонту
- •5 Примеры решения задач
- •2 Первый закон Ньютона
- •3 Второй закон Ньютона
- •4 Третий закон Ньютона
- •5 Виды сил в природе. Сила всемирного тяготения
- •Примеры решения задач.
- •2 Импульс
- •3 Закон сохранения импульса
- •4 Однородность пространства
- •5 Центр масс
- •6 Закон движения центра масс
- •7 Уравнение движения тела переменной массы
- •9 Формула Циолковского
- •Примеры решения задач.
- •3 Энергия
- •4 Кинетическая энергия
- •5 Потенциальные и непотенциальные силы
- •6 Потенциальная энергия тела в однородном поле силы тяжести
- •7 Центральные силы
- •8 Потенциальная энергия гравитационного взаимодействия
- •9 Потенциальная энергия упругой деформации
- •10 Полная механическая энергия
- •11 Закон сохранения полной механической энергии
- •1 Момент силы
- •2 Момент импульса
- •3 Основное уравнение динамики вращательного движения
- •4 Закон сохранения момента импульса
- •5 Абсолютно твердое тело
- •6 Кинематика движения твердого тела
- •7 Момент импульса вращающегося твердого тела с
- •8 Основное уравнение динамики вращательного движения
- •9 Момент инерции твердого тела
- •12 Кинетическая энергия вращательного движения
- •13 Работа при вращательном движении
- •14 Аналогия между поступательным и вращательным движением
- •15 Гироскоп и его свойства
- •15.1 История создания гироскопа
- •15.2 Свойства гироскопа
- •15.3 Гирокомпас
- •3 Условия равновесия
- •Геометрическая сумма всех сил, действующих на тело в состоянии покоя, равна нулю:
- •Алгебраическая сумма моментов всех сил, действующих на тело в состоянии равновесия, равна нулю:
- •3.1 Устойчивое равновесие
- •3.2 Безразличное равновесие
- •3.3 Неустойчивое равновесие
- •4 Теория рычага Архимеда
- •1 Механические колебания.
- •2 Свободные гармонические колебания
- •3 Пружинный осциллятор
- •4 Физический маятник
- •5 Математический маятник
- •6 Затухающие колебания
- •7 Вынужденные колебания
- •8 Резонанс
- •9 Автоколебания
- •1 Характеристики волны
- •2 Уравнение бегущей волны
- •3 Волновое уравнение
- •4 Принцип суперпозиции волн
- •5 Интерференция волн
- •6 Стоячие волны
- •7 Звуковые волны
- •8 Эффект Доплера
- •2 Основы гидростатики
- •2.1 Кинематическое описание движения жидкости. Линии и трубки тока
- •2.2 Уравнение неразрывности
- •2.3 Гидростатическое давление. Закон Паскаля
- •2.4 Закон Архимеда
- •2.5 Гидравлический пресс
- •3 Основы гидродинамики
- •3.1 Уравнение Бернулли
- •3.2 Следствия из закона Бернулли
- •3.2 Реальные жидкости. Силы вязкого трения
- •3.3 Режимы течения жидкости. Число Рейнольдса
- •3.4 Подъемная сила
- •4 Примеры решения задач
- •1 Предмет и основные понятия термодинамики и молекулярной физики
- •3 Идеальный газ. Термодинамические параметры газа
- •Термодинамические параметры газа
- •1 История развития термодинамики.
Вращательное движение. Угловые величины.
Взаимосвязь между линейными и угловыми величинами.
Система кинематических уравнений, описывающих равнопеременное движение по окружности.
Система кинематических уравнений, описывающих движение тела, брошенного под углом к горизонту.
Примеры решения задач.
1 Вращательное движение. Угловые величины
Из истории науки. К XIV веку относятся сведения про ввод в научную терминологию понятия угловой скорости.
Т
.к.
при движении по окружности вектор
скорости
постоянно
меняет свое направление (рис.2.1), то
говорить о равномерном движении по
окружности некорректно.
Для описания движения по окружности полное ускорение раскладывается по правилу параллелограмма на составляющие, а его модуль рассчитывается по теореме Пифагора:
,
где
–
нормальное
ускорение(центростремительное),
–
тангенциальное
(касательное) ускорение.
Нормальное ускорениехарактеризует изменение скорости по направлению и равно отношению квадрату скорости к радиусу кривизны:
.
Тангенциальное
ускорениехарактеризует
изменение скорости по величине и равно
изменению скорости в единицу времени
или равно первой производной линейной
скорости по времени:
.
При вращательном движении вводятся угловые величины, аналогичные величинам, характеризующим поступательное движение: угол поворота, угловая скорость, угловое ускорение.
Угол поворота определяется как вектор по правилу правого винта (рис. 2.2). Скалярное значение угла поворота в Системе интернациональной измеряется в радианах: φ = [рад].
Угловая скорость характеризует угол поворота в единицу времени:
.
Различают среднюю и мгновенную угловую скорость. Средняя угловая скорость численно равна отношению полного угла поворота ко времени, в течение которого это вращение произошло:
.
Мгновенная угловая скоростьопределяется как предел отношения бесконечно малого угла поворота к бесконечно малому промежутку времени, в течение которого это вращение произошло, илиравна первой производной углаповоротапо времени:
.
Угловое ускорение численно равно изменению угловой скорости в единицу времени:
.
Различают мгновенное и среднее угловое ускорение.
Среднее угловое ускорение равно отношению изменению угловой скорости ко времени, в течение которого это изменение угловой скорости произошло:
.
Мгновенное угловое ускорение определяется как предел отношения бесконечно малого изменения угловой скорости к бесконечно малому промежутку времени, в течение которого это изменение угловой скорости произошло, т.е. равно первой производной угловой скорости по времени или второй производной угла поворота по времени:
.
2 Взаимосвязь между линейными и угловыми величинами
Взаимосвязь между углом поворота и длиной дуги окружности (рис. 2.2):
,
(3.1)
где S –длина дуги, R – радиус кривизны траектории, – угол поворота [] = [рад].
Дифференцируем
уравнение (1) по времени dt:
.
После
интегрирования получим взаимосвязь
между линейной и угловой скоростями:
.
(3.2)
Продифференцируем
уравнение (2) по времени dt:
.
После
интегрирования получим взаимосвязь
между тангенциальным и угловым
ускорением:
.
(3.3)
