- •1 Предмет механики
- •2 Основные понятия механики
- •3 Кинематика
- •4 Равномерное движение
- •5 Равноускоренное движение
- •Примеры решения задач.
- •2 Взаимосвязь между линейными и угловыми величинами
- •3 Система кинематических уравнений, описывающих равнопеременное движение по окружности
- •4 Система кинематических уравнений, описывающих движение тела, брошенного под углом к горизонту
- •5 Примеры решения задач
- •2 Первый закон Ньютона
- •3 Второй закон Ньютона
- •4 Третий закон Ньютона
- •5 Виды сил в природе. Сила всемирного тяготения
- •Примеры решения задач.
- •2 Импульс
- •3 Закон сохранения импульса
- •4 Однородность пространства
- •5 Центр масс
- •6 Закон движения центра масс
- •7 Уравнение движения тела переменной массы
- •9 Формула Циолковского
- •Примеры решения задач.
- •3 Энергия
- •4 Кинетическая энергия
- •5 Потенциальные и непотенциальные силы
- •6 Потенциальная энергия тела в однородном поле силы тяжести
- •7 Центральные силы
- •8 Потенциальная энергия гравитационного взаимодействия
- •9 Потенциальная энергия упругой деформации
- •10 Полная механическая энергия
- •11 Закон сохранения полной механической энергии
- •1 Момент силы
- •2 Момент импульса
- •3 Основное уравнение динамики вращательного движения
- •4 Закон сохранения момента импульса
- •5 Абсолютно твердое тело
- •6 Кинематика движения твердого тела
- •7 Момент импульса вращающегося твердого тела с
- •8 Основное уравнение динамики вращательного движения
- •9 Момент инерции твердого тела
- •12 Кинетическая энергия вращательного движения
- •13 Работа при вращательном движении
- •14 Аналогия между поступательным и вращательным движением
- •15 Гироскоп и его свойства
- •15.1 История создания гироскопа
- •15.2 Свойства гироскопа
- •15.3 Гирокомпас
- •3 Условия равновесия
- •Геометрическая сумма всех сил, действующих на тело в состоянии покоя, равна нулю:
- •Алгебраическая сумма моментов всех сил, действующих на тело в состоянии равновесия, равна нулю:
- •3.1 Устойчивое равновесие
- •3.2 Безразличное равновесие
- •3.3 Неустойчивое равновесие
- •4 Теория рычага Архимеда
- •1 Механические колебания.
- •2 Свободные гармонические колебания
- •3 Пружинный осциллятор
- •4 Физический маятник
- •5 Математический маятник
- •6 Затухающие колебания
- •7 Вынужденные колебания
- •8 Резонанс
- •9 Автоколебания
- •1 Характеристики волны
- •2 Уравнение бегущей волны
- •3 Волновое уравнение
- •4 Принцип суперпозиции волн
- •5 Интерференция волн
- •6 Стоячие волны
- •7 Звуковые волны
- •8 Эффект Доплера
- •2 Основы гидростатики
- •2.1 Кинематическое описание движения жидкости. Линии и трубки тока
- •2.2 Уравнение неразрывности
- •2.3 Гидростатическое давление. Закон Паскаля
- •2.4 Закон Архимеда
- •2.5 Гидравлический пресс
- •3 Основы гидродинамики
- •3.1 Уравнение Бернулли
- •3.2 Следствия из закона Бернулли
- •3.2 Реальные жидкости. Силы вязкого трения
- •3.3 Режимы течения жидкости. Число Рейнольдса
- •3.4 Подъемная сила
- •4 Примеры решения задач
- •1 Предмет и основные понятия термодинамики и молекулярной физики
- •3 Идеальный газ. Термодинамические параметры газа
- •Термодинамические параметры газа
- •1 История развития термодинамики.
5 Абсолютно твердое тело
Абсолютно твердое тело – это физическая модель, вводимая для описания движения твердых тел конечных размеров.
Абсолютно твердое тело – вторая опорная физическая модель механики наряду с материальной точкой. Механика абсолютно твердого тела полностью сводима к механике материальных точек, но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твердого тела), представляющее большой теоретический и практический интерес. Существует несколько определений.
Абсолютно твёрдое тело – модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.
Абсолютно твёрдое тело –механическая система, обладающая только поступательными и вращательнымистепенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.
Абсолютно твёрдое тело – тело, взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.
Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела). В трёхмерном пространстве и в случае отсутствия (других) связей абсолютно твёрдое тело обладает шестью степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.
Абсолютно твёрдых тел в природе не существует, однако в очень многих случаях, когда деформация тела мала и ею можно пренебречь. Реальное тело может приближенно рассматриваться как абсолютно твёрдое тело без ущерба для задачи.
6 Кинематика движения твердого тела
6.1 Кинематическим условием абсолютной твердости является теорема о проекции скорости: проекции скоростей двух точек твердого тела на направление, проходящее через эти две точки, равны между собой:
.
Т.е. при движении абсолютно твердое тело не деформируется (рис. 6.6).
Таким образом, теорема о проекции скорости является аналитическим выражением абсолютной твердости.
6.2 При вращательном движении угловая скорость одинакова для всех точек твердого тела (рис. 6.7):
.
Т.к. пути S1,S2,S3, пройденные при вращении каждой точкой тела за равные промежутки времени, разные (рис. 6.6), то линейные скорости точек твердого тела разные, причем:
<
<
.
6.3 Движение всех точек твердого тела любой произвольной формы с закрепленной осью вращения является плоским. Совершается плоское движение по окружностям радиусом Ri, лежащим в плоскостях, перпендикулярных оси вращения (рис. 6.8). Для точки Δmi линейная скорость будет равна:
,
векторному произведению радиус-вектора этой точки на вектор угловой скорости, как и для любой точки твердого тела при плоском движении.
