- •1 Предмет механики
- •2 Основные понятия механики
- •3 Кинематика
- •4 Равномерное движение
- •5 Равноускоренное движение
- •Примеры решения задач.
- •2 Взаимосвязь между линейными и угловыми величинами
- •3 Система кинематических уравнений, описывающих равнопеременное движение по окружности
- •4 Система кинематических уравнений, описывающих движение тела, брошенного под углом к горизонту
- •5 Примеры решения задач
- •2 Первый закон Ньютона
- •3 Второй закон Ньютона
- •4 Третий закон Ньютона
- •5 Виды сил в природе. Сила всемирного тяготения
- •Примеры решения задач.
- •2 Импульс
- •3 Закон сохранения импульса
- •4 Однородность пространства
- •5 Центр масс
- •6 Закон движения центра масс
- •7 Уравнение движения тела переменной массы
- •9 Формула Циолковского
- •Примеры решения задач.
- •3 Энергия
- •4 Кинетическая энергия
- •5 Потенциальные и непотенциальные силы
- •6 Потенциальная энергия тела в однородном поле силы тяжести
- •7 Центральные силы
- •8 Потенциальная энергия гравитационного взаимодействия
- •9 Потенциальная энергия упругой деформации
- •10 Полная механическая энергия
- •11 Закон сохранения полной механической энергии
- •1 Момент силы
- •2 Момент импульса
- •3 Основное уравнение динамики вращательного движения
- •4 Закон сохранения момента импульса
- •5 Абсолютно твердое тело
- •6 Кинематика движения твердого тела
- •7 Момент импульса вращающегося твердого тела с
- •8 Основное уравнение динамики вращательного движения
- •9 Момент инерции твердого тела
- •12 Кинетическая энергия вращательного движения
- •13 Работа при вращательном движении
- •14 Аналогия между поступательным и вращательным движением
- •15 Гироскоп и его свойства
- •15.1 История создания гироскопа
- •15.2 Свойства гироскопа
- •15.3 Гирокомпас
- •3 Условия равновесия
- •Геометрическая сумма всех сил, действующих на тело в состоянии покоя, равна нулю:
- •Алгебраическая сумма моментов всех сил, действующих на тело в состоянии равновесия, равна нулю:
- •3.1 Устойчивое равновесие
- •3.2 Безразличное равновесие
- •3.3 Неустойчивое равновесие
- •4 Теория рычага Архимеда
- •1 Механические колебания.
- •2 Свободные гармонические колебания
- •3 Пружинный осциллятор
- •4 Физический маятник
- •5 Математический маятник
- •6 Затухающие колебания
- •7 Вынужденные колебания
- •8 Резонанс
- •9 Автоколебания
- •1 Характеристики волны
- •2 Уравнение бегущей волны
- •3 Волновое уравнение
- •4 Принцип суперпозиции волн
- •5 Интерференция волн
- •6 Стоячие волны
- •7 Звуковые волны
- •8 Эффект Доплера
- •2 Основы гидростатики
- •2.1 Кинематическое описание движения жидкости. Линии и трубки тока
- •2.2 Уравнение неразрывности
- •2.3 Гидростатическое давление. Закон Паскаля
- •2.4 Закон Архимеда
- •2.5 Гидравлический пресс
- •3 Основы гидродинамики
- •3.1 Уравнение Бернулли
- •3.2 Следствия из закона Бернулли
- •3.2 Реальные жидкости. Силы вязкого трения
- •3.3 Режимы течения жидкости. Число Рейнольдса
- •3.4 Подъемная сила
- •4 Примеры решения задач
- •1 Предмет и основные понятия термодинамики и молекулярной физики
- •3 Идеальный газ. Термодинамические параметры газа
- •Термодинамические параметры газа
- •1 История развития термодинамики.
ОСНОВНЫЕ ПОНЯТИЯ МЕХАНИКИ. КИНЕМАТИКА
План
Предмет механики.
Основные понятия механики.
Кинематика.
Равномерное движение.
Равноускоренное движение.
Примеры решения задач.
1 Предмет механики
Механика – раздел физики, изучающий механическое движение.
Разделами, составляющими курс «Механики» являются: кинематика, динамика, динамика вращательного движении, законы сохранения, статика, гидростатика и гидродинамика, механические колебания и волны. Все разделы механики взаимосвязаны между собой (рис. 1.1).
В физике для облегчения описания движения тел в зависимости от условий конкретных задач используют различные физические модели: материальная точка, абсолютно твердое тело, идеальный газ, точечный заряд, абсолютно черное тело и т.д.
В кинематике используется физическая модель тела, в которой пренебрегается размерами и деталями движения его частей – материальная точка.
2 Основные понятия механики
Основными понятиями «Механики» являются пространство, время, механическое движение, перемещение.
В классической механике время – абсолютно и однородно (теория относительности доказывает, что время может сжиматься, растягиваться); пространство – однородно и изотропно. Перечисленные свойства пространства и времени приводят в механике к законам сохранения:
однородность времени приводит к закону сохранения энергии.
однородность пространства – к закону сохранения импульса.
изотропность пространства – к закону сохранения момента импульса.
Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.
Из истории науки.В XIV в. немецкий математик А. Саксонский (1316-1390) ввел деление движения на поступательное, вращательное, равномерное и переменное и определил, что свободное падение не является равномерным движением.
Поступательное – это движение, при котором все точки тела перемещаются параллельно друг другу (корпус судна, корпус автомобиля, резец токарного станка и т.д.).
Вращательное – это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения (вентилятор, деталь на токарном станке, ротор двигателя и т.д.).
Вращательно-поступательное – это движение, при котором все точки одновременно вращаются и поступательно перемещаются (колеса автомобиля, винт корабля, винты двигателя самолета и т.д.).
Для описания механического движения выбирают удобное для решения задачи тело отсчета, связанную с ним систему координат и часы (рис. 1.2).
От выбора тела отсчета и системы координат зависит сложность решения задач по «Механике.
Если материально точка прошла какой-то путь из точки 1 с координатами X1,Y1,Z1 в точку 2 с координатами X2,Y2,Z2 , то линия, по которой она двигалась, называется траекторией. Длина траектория равна пройденному пути.
В декартовой системе координат существует два способа описания механического движения: координатный и векторный.
Зависимость координат от времени X(t), Y(t), Z(t) определяет координатный способ описания механического движения.
При векторном описании механического движения в каждый момент времени задается радиус-вектор тела или материальной точки. Радиус-вектор – вектор, направленный из начала координат в точку, в которой находится центр тяжести тела либо материальная точка.
В
декартовой системе координат координатный
и векторный способы связаны между собой
соотношением:
,
где
– единичные базисные векторы.
Приращение
радиус-вектора
называют вектором
перемещения.
Модуль вектора перемещения определяется по формуле:
.
