- •1. Определение и общая характеристика фотосинтеза, значение фотосинтеза
- •I Световая фаза
- •II Темновая фаза
- •2. Пигменты фотосинтезирующих растений, их физиологическая роль.
- •3. Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов. Сущность фотофизического этапа
- •Фотохимический этап
- •Различают два типа потока электронов:
- •6) Цикл Кальвина можно разделить на фазы.
- •7. С4 путь фотосинтеза
- •8.Факторы, влияющие на фотосинтез
- •9. Общее представление о путях дыхательного обмена и их взаимосвязь с другими обменными процессами.
- •11) Гликолиз: химизм, биологическая роль.
1. Определение и общая характеристика фотосинтеза, значение фотосинтеза
ФОТОСИНТЕЗ – это процесс образования органических веществ из CO2 и H2O на свету, при участии фотосинтетических пигментов.
С биохимической точки зрения, фотосинтез – это окислительно-восстановительный процесс превращения устойчивых молекул неорганических веществ СО2 и Н2О в молекулы органических веществ – углеводы.
Общая характеристика
6CO2 + 6H2O → C6H12O6 + O2
Процесс фотосинтеза состоит из двух фаз и нескольких этапов, которые идут последовательно.
I Световая фаза
1. Фотофизический этап – происходит во внутренней мембране хлоропластов и связан с поглощением солнечной энергии пигментными системами.
2. Фотохимический этап – проходит во внутренней мембране хлоропластов и связан с преобразованием солнечной энергии в химическую энергию АТФ и НАДФН2 и фотолизом воды.
II Темновая фаза
3. Биохимический этап или цикл Кальвина – проходит в строме хлоропластов. На этом этапе углекислый газ восстанавливается до углеводов.
ЗНАЧЕНИЕ
1. Обеспечение постоянства СО2 в воздухе. Связывание СО2 в ходе фотосинтеза в значительной мере компенсирует его выделение в результате других процессов (дыхание, брожение, деятельность вулканов, производственная деятельность человечества).
2. Препятствует развитию парникового эффекта. Часть солнечного света отражается от поверхности Земли в виде тепловых инфракрасных лучей. СО2поглощает инфракрасное излучение и тем самым сохраняет тепло на Земле. Повышение содержания СО2 в атмосфере может способствовать увеличению температуры, то есть создавать парниковый эффект. Однако высокое содержание СО2 в воздухе активирует фотосинтез и, следовательно, концентрация СО2 в воздухе опять уменьшится.
3. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли кислорода было очень мало. Сейчас его содержание составляет 21 % по объему воздуха. В основном, этот кислород является продуктом фотосинтеза.
4. Озоновый экран. Озон (О3) образуется в результате фотодиссоциации молекул кислорода под действием солнечной радиации на высоте около 25 км. Защищает всё живое на Земле от губительных лучей.
2. Пигменты фотосинтезирующих растений, их физиологическая роль.
Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему.
В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм.
Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта.
Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой.
Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами.
ФИЗИОЛОГИЧЕСКАЯ РОЛЬ
1) избирательно поглощать энергию света,
2) запасать ее в виде энергии электронного возбуждения,
3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.
Каротиноиды - это жирорастворимые пигменты желтого, оранжевого, красного цвета — присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла.
К каротиноидам относятся 3 группы соединения:
- оранжевые, или красные каротины;
- жёлтые ксантофиллы;
- каротиноидные кислоты.
ФИЗИОЛОГИЧЕСКАЯ РОЛЬ
1) Поглощение света в качестве дополнительных пигментов;
2) Защита молекул хлорофилла от необратимого фотоокисления;
3) Тушение активных радикалов;
4) Участвуют в фототропизме, т.к. способствуют направлению роста побега.
Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на:
- фикоэритрины – белки красного цвета;
- фикоцианин – синеголубые белки;
- алофикоцианин – синие белки.
Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду.
На глубине 30 м полностью исчезают красные лучи
На глубине 180 м – жёлтые
На глубине 320 м – зелёные
На глубине более 500 м не проникают синие и фиолетовые лучи.
Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.
ФИЗИОЛОГИЧЕСКАЯ РОЛЬ
1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр.
2) Фикобилины выполняют у водорослей функции светособирающего комплекса.
3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений.
