- •1.Предмет и особенности термодинамики. Задачи термодинамики.
- •3.Понятие о термодинамическом процессе (тп). Равновесные и неравновесные процессы. Графическое изображение процессов.
- •6. Работа и теплота как различные формы обмена энергией между телами, между термодинамической системой и окружающей средой. Принцип эквивалентности теплоты и работы.
- •7. Работа изменения объема (работа расширения). Определение работы аналитическим и графическим методом. Рабочая диаграмма p-V и ее свойства.
- •8.Внутреняя энергия тела и ее св-ва. Внутренняя энергия идеального газа.
- •9.Энтальпия тела и ее свойства. Энтальпия идеального газа.
- •10 Вопрос
- •11 Вопрос
- •Вопрос 12. Сущность и формулировка 2 закона термодинамики. Условия получения работы в тепловом двигателе. Неосуществимость вечного двигателя 2 рода.
- •Вопрос 13. Прямой и обратный обратимые циклы Карно для идеального газа и их анализ.
- •14 Вопрос: Энтропия как функция состояния любого тела. Тепловая диаграмма t-s и ее свойства
- •18 Вопрос: Аналитическое выражение второго закона термодинамики
- •23.Термодинамические таблицы воды и водяного пара.
- •24.Диаграммы t-s и h-s для пара.
- •26)Изотермический процесс
- •28.Адиабатический обратимый процесс.
- •29.Политропный обратимый процесс
- •30.Процесс дросселирования газов и паров.Адиабатное дросселирование.Эфект джоуля-томсана.
- •35. Основы теплофикации. Коэффициент использования теплоты.
- •36. Холодильные циклы. Холодильный коэффициент. Холодопроизводительность. Виды холодильных установок.
- •37. Цикл парокомпрессионной холодильной установки и ее исследование.
- •41 Теплопроводность через одну- и многослойную плоскую стенку . Температурный напор. Термическое сопротивление.
- •42 Теплопроводность через одно- и многослойную цилиндрическую стенку
- •1)Однородная цилиндрическая стенка.
- •2)Многослойная цилиндрическая стенка.
- •43 Теплопроводность через плоскую одно- и многослойную стенку . Уравнение теплопередачи.
- •69. Сжигание газа и газовые горелки
- •70. Особенности сжигания жидкого топлива
- •77. Слоевой, факельный и циклонный способы сжигания твердого топлива
- •Вопрос 72 Принципиальная схема котельной установки. Принцип работы и класификация.
- •Вопрос 73 Тепловой баланс котельного агрегата. Кпд котельного агрегата и расход топлива.
- •80. Требования к качеству воды
- •81.Теплоснабжение промышленных предприятий. Теплоносители. Источники теплоты.
- •Вопрос 82
69. Сжигание газа и газовые горелки
Горение газа – это химический процесс соединения горючих веществ с кислородом или воздухом, сопровождаемый выделением тепла и света. Чаще всего в качестве окислителя используется воздух.
Газогорелочные устройства предназначены для подачи к месту горения определенных количеств газа и воздуха и для создания условий их смешения и воспламенения. Кроме того, горелка должна обеспечивать полное и устойчивое сгорание топлива и возможность регулирования процесса горения
70. Особенности сжигания жидкого топлива
При зажигании жидкого горючего, имеющего свободную поверхность, загорается его пар, содержащийся в пространстве над поверхностью, образуя горящий факел. За счет тепла, излучаемого факелом, испарение резко увеличивается. При установившемся режиме теплообмена между факелом и зеркалом жидкости количество испаряющегося, а следовательно, и сгорающего горючего достигает максимального значения и далее остается постоянным во времени.
Процесс горения жидких горючих со свободной поверхностью происходит следующим образом. При установившемся режиме горения за счет тепла, излучаемого факелом, жидкое горючее испаряется. В восходящий поток горючего, находящегося в паровой фазе, посредством диффузии проникает воздух из окружающего пространства. Полученная таким образом смесь образует горящий факел в виде конуса, отстоящего от зеркала испарения на 0,5—1 мм. Устойчивое горение протекает на поверхности, где смесь достигает пропорции, соответствующей стехиометрическому соотношению горючего и воздуха. Это предположение следует из тех же соображений, что и в случае диффузионного горения газа. Химическая реакция протекает в очень тонком слое фронта факела, толщина которого не превышает нескольких долей миллиметра. Объем, занимаемый факелом, зоной горения делится на две части: внутри факела находятся пары горючей жидкости и продукты сгорания, а вне зоны горения — смесь продуктов горения с воздухом. Так как условия подвода кислорода к зоне горения при сжигании различных жидких горючих со свободной поверхности примерно одинаковы, следует ожидать, что скорость их горения, отнесенная к фронту пламени, т. е. к боковой поверхности факела, также должна быть одинаковой. Таким образом, исследования горения жидких горючих со свободной поверхности показали, что: горение жидких топлив происходит после их испарения в паровой фазе. Скорость горения жидких топлив со свободной поверхности определяется скоростью их испарения за счет тепла, излучаемого зоной горения, при установившемся режиме теплообмена между факелом и зеркалом испарения; скорость горения жидких горючих со свободной поверхности растет с увеличением температуры их подогрева, с переходом к горючим с большей интенсивностью излучения зоны горения, меньшей теплотой парообразования и теплоемкостью и не зависит от величины и формы зеркала испарения;
интенсивность излучения зоны горения на зеркало испарения, горящего со свободной поверхности жидкого горючего, зависит только от его физико-химических свойств и является характерной константой для каждого жидкого горючего; теплонапряжение фронта диффузионного факела над поверхностью испарения жидкого горючего практически не зависит от диаметра тигля и рода топлива; горению жидких горючих со свободной поверхности присущ повышенный химический недожог, величина которого характерна для каждого горючего.
В пространстве между каплей и зоной горения находятся пары жидкого топлива и продукты горения, вне зоны горения — воздух и продукты сгорания. В зону горения изнутри диффундируют пары топлива, а снаружи — кислород. Здесь эти компоненты смеси вступают в химическую реакцию, которая сопровождается выделением тепла. Из зоны горения тепло переносится наружу и к капле, а продукты сгорания диффундируют в окружающее пространство и в пространство между зоной горения и каплей. По мере выгорания капли из-за уменьшения поверхности общее испарение уменьшается, зона горения суживается и исчезает при полном выгорании капли.
Воздух, необходимый для горения, подается в устье форсунки, захватывает тонко распыленное жидкое топливо и образует в топочной камере неизотермическую затопленную струю. Струя, распространяясь, нагревается за счет увлечения продуктов сгорания высокой температуры. Мельчайшие капельки жидкого топлива, нагреваясь благодаря конвективному теплообмену в струе, испаряются. Нагрев распыленного топлива происходит также за счет поглощения ими тепла, излучаемого топочными газами и раскаленной обмуровкой. На начальном участке и в особенности в пограничном слое струи интенсивный нагрев факела вызывает быстрое испарение капель. Пары горючего, смешиваясь с воздухом, создают газовоздушную горючую смесь, которая, воспламеняясь, образует факел. Таким образом, процесс горения жидкого топлива можно разбить на следующие фазы: распыление жидкого топлива, испарение и образование газовоздушной смеси, воспламенение горючей смеси и горение последней.
