- •Строение мицеллы.
- •3). Способы выражения концентраций растворов.
- •7). Принцип ле-шателье.
- •8). Окислительно-восстановительные реакции (овр)
- •9). Электролиз расплавов и растворов. Применение электролиза.
- •10). Положение металлов в периодической таблице
- •Общие физические свойства
- •21). Пробоподготовка.
1). Дисперсные системы – это гетерогенные системы, состоящие из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Особые свойства дисперсных систем обусловлены именно малым размером частиц и наличием большой межфазной поверхности. В связи с этим определяющими являются свойства поверхности, а не частиц в целом. Характерными являются процессы, происходящие на поверхности, а не внутри фазы. Особенность дисперсных систем состоит в их дисперсности – одна из фаз обязательно должна быть раздробленной, ее называют дисперсной фазой. Сплошная среда, в которой распределены частицы дисперсной фазы, называется дисперсионной средой. Фаза считается дисперсной, если вещество раздроблено хотя бы в одном направлении.
Дисперсные системы можно классифицировать по многим признакам, что связано с огромным множеством объектов, которые изучает коллоидная химия. В качестве основного классификационного признака можно выделить размер частиц дисперсной фазы:
-Грубодисперсные (> 10 мкм): сахар-песок, грунты, туман, капли дождя, вулканический пепел, магма и т. п.
-Среднедисперсные (0,1-10 мкм): эритроциты крови человека, кишечная палочка и т. п.
-Высокодисперсные (1-100 нм): вирус гриппа, дым, муть в природных водах, искусственно полученные золи различных веществ, водные растворы природных полимеров (альбумин, желатин и др.) и т. п.
-Наноразмерные (1-10 нм): молекула гликогена, тонкие поры угля, золи металлов, полученные в присутствии молекул органических веществ, ограничивающих рост частиц, углеродные нанотрубки, магнитные нанонити из железа, никеля и т. п.
Именно размер частиц (линейный размер, а не вес и не число частиц атомов в частице!) является важнейшим количественным показателем дисперсных систем, определяющим их качественные особенности. В соответствии с кинетическими свойствами дисперсной фазы различают свободнодисперсные и связнодисперсные системы. Выделяют также разбавленные и концентрированные системы. По кинетическим свойствам дисперсной фазы дисперсные системы можно разделить на два класса:
Свободнодисперсные системы, у которых дисперсная фаза подвижна;
Связнодисперсные системы, дисперсионная среда которых твердая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.
В свою очередь эти системы классифицируются по степени дисперсности. Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами — полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.
Строение мицеллы.
Строение структурной единицы лиофобных коллоидов – мицеллы – может быть показано лишь схематически, поскольку мицелла не имеет определенного состава.
Мицеллы (уменьшительное от лат. mica — частица, крупинка) — частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Средний размер мицелл от 10−5 до 10−7см.
Например, мицелла сульфида мышьяка имеет строение: {(As2S3)m•nHS−•(n-x)H+}x-•хН+
Нерастворимых веществ нет. Даже твёрдые вещества, которые, вроде бы, являются нерастворимыми, - тоже частично растворяются, при этом образуя мельчайшие частицы в растворителе мицеллы.Эти частицы проходят через фильтр. Они настолько мелкие и лёгкие, что не выпадают в осадок. Такие частицы (мицеллы) называют коллоидными. А растворы - коллоидные растворы.
Коллоидная мицелла золя иодида серебра образована микрокристаллом иодида серебра, который способен к избирательной адсорбции из окружающей среды катионов Ag+ или иодид-ионов. Если реакция проводится в избытке иодида калия, то кристалл будет адсорбировать иодид-ионы; при избытке нитрата серебра микрокристалл адсорбирует ионы Ag+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими, а сам заряженный кристалл – ядром мицеллы. Заряженное ядро притягивает из раствора ионы с противоположным зарядом – противоионы; на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный слой противоионов; ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой. Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов; противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции – десорбции.
Схематически мицелла золя иодида серебра, полученного в избытке иодида калия (потенциалопределяющие ионы – анионы I–, противоионы – ионы К+) может быть изображена следующим образом: {[AgI]m · nI– · (n-x)K+}x– · x K+
При получении золя иодида серебра в избытке нитрата серебра коллоидные частицы будут иметь положительный заряд: {[AgI]m · nAg+ · (n-x)NO3–}x+ · x NO3–
2). Агрега́тное состоя́ние вещества — состояние одного и того же вещества в определённом интервале температур и давлений, характеризующееся определёнными, неизменными в пределах указанных интервалов, качественными свойствами: способностью (твёрдое тело) или неспособностью (жидкость, газ, плазма) сохранять объём и форму, наличием или отсутствием дальнего (твёрдое тело) и ближнего порядка (жидкость), и другими свойствами.
Традиционно выделяют три агрегатных состояния: твёрдое тело, жидкость и газ.
Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия. «Гомогенный» — значит, каждый из компонентов распределён в массе другого в виде своих частиц, то есть атомов, молекул или ионов. Растворителем называется компонент, концентрация которого выше концентрации других компонентов. Раствор это не механическая смесь, поскольку при растворении наблюдаются объемные и энергетические эффекты.
Растворы делятся на электролиты и неэлектролиты. Вещества, которые в растворе или расплаве полностью или частично распадаются на ионы и проводят электрический ток, называются электролитами. Идеальным называется раствор, в котором не происходит химической реакции между компонентами, а силы межмолекулярного взаимодействия между взаимодействующими компонентами одинаковы. Общие (коллигативные) свойства растворов те, которые не зависят от природы растворённых веществ, а зависит от количества растворенного вещества.
Закон Рауля: понижение давления насыщенного пара растворителя над раствором пропорционально мольной доле растворённого нелетучего вещества:
Первое следствие из закона Рауля:повышение температуры кипения DТкип пропорционально моляльной концентрации раствора:
Второе следствие из закона Рауля:понижение температуры замерзания DТзам пропорционально моляльной концентрации раствора:
К основным свойствам растворов относятся прочность, водонепроницаемость, морозостойкость, усадка.
Прочность раствора характеризуется его маркой, которая определяется пределом прочности при сжатии стандартных образцов - кубов с ребрами 7,07 см, выполненных из растворной смеси и испытанных после 28-суточного твердения при температуре 25 °С (ГОСТ 5802 - 86). По пределу прочности на сжатие (кгс/см2) для строительных растворов установлены следующие марки: 4, 10, 25, 50, 75, 150, 200.
Водонепроницаемость - это свойство раствора не пропускать через себя воду. Степень водонепроницаемости зависит в основном от пористости раствора. Менее всего пропускают воду плотные растворы (например, цементные). Водонепроницаемость раствора повышают введением в него добавок при приготовлении растворной смеси - церезита, жидкого стекла или полимерных смол.
Морозостойкость - это свойство раствора в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и значительного снижения прочности и массы. Морозостойкость раствора характеризуется маркой (Мрз). Марка определяется числом циклов попеременного замораживания и оттаивания, которые выдержат образцы - кубы с ребром 7,07 см в насыщенном водой состоянии. Различают следующие марки раствора по морозостойкости: Мрз 10, 15, 25, 35, 50, 100, 150, 200, 300.
Усадка - это уменьшение объема раствора при твердении вяжущих веществ. Усадка - нежелательное явление, так как она может вызвать появление трещин на отделываемой поверхности, разрушение штукатурки и облицовки.
