- •1 Билет
- •4 Билет
- •5 Билет
- •6 Билет
- •7 Билет
- •8 Билет
- •9 Билет
- •Общие химические свойства металлов
- •I. Реакции с неметаллами
- •II. Реакции с кислотами
- •10 Билет
- •2 . Предельные одноатомные спирты, их строение и свойства. Дноатомные спирты
- •11 Билет
- •Физические свойства
- •Химические свойства
- •12 Билет
- •13 Билет
- •14 Билет
- •15 Билет
- •1. Физические свойства
- •16 Билет
- •17 Билет
- •18Билет
- •20Билет
- •21Билет
- •22 Билет
- •24 Билет
- •25Билет
21Билет
1 Железо, его положение в периодической системе химических элементов Д.И. Менделеева, строение атома, свойства
В периодической таблице гимических элементов Д. И. Менделеева железо Fe расположено в 4-м периоде VIII(8) группы побочной подгруппы. 1S2 2S2 2P6 3S2 3P6 3d6 4S2
Железо — типичный металл, в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности — углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» — группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.
2 Белки как биополимеры. Свойства и биологические функции белков.
Основная часть органических соединений — биологические полимеры .К ним относят белки, нуклеиновые кислоты и полисахариды.В клетках растений преобладают углеводы, а в животных клетках больше белков.Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.ыделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды). Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства.Способность отдавать и присоединять Н+ определяют буферные свойства белков.Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, , радиация, обезвоживание)могут вызывать нарушение структурной организации молекулы белка.
Вычислите молярную массу
.
22 Билет
1 Получение серной кислоты
Существуют 2 промышленных способа получения серной кислоты: контактный и нитрозный.
При контактном способе получения серной кислоты сульфидную руду (чаще всего железный колчедан FеS2) обжигают в специальных колчеданных печах. При этом получается обжиговый газ, содержащий приблизительно 9 % сернистого ангидрида.
Перед тем, как произвести окисление сернистого газа в серный ангидрид, обжиговый газ очищают от целого ряда примесей, которые могут затруднить и даже сделать невозможным последующее окисление. Одной из таких примесей является пыль, которая может отравить катализатор. Очистка от пыли производится в специальных устройствах - циклон-аппаратах и электрофильтрах.
В контактном аппарате производится окисление сернистого ангидрида в серный. Эта реакция является экзотермической. Однако образующийся серный ангидрид термически малоустойчив и при высокой температуре может снова разлагаться на кислород и сернистый газ. Таким образом реакция 2 SO2 + O2 Y 2 SO3 обратима.
При низкой температуре окисление идет очень медленно и значительная часть сернистого газа, проходя через контактный аппарат, не успевает окислиться. Поэтому, чтобы достигнуть максимальной степени окисления сернистого газа и в то же время избежать разложения серного ангидрида, скорость газа регулируют таким образом, чтобы температура в контактном аппарате поддерживалась в пределах 470-490 град. С.
При нитрозном способе получения серной кислоты окисление сернистого газа осуществляется оксидами азота. Обжиговый газ подается в продукционную башню 1, орошаемую нитрозилсерной кислотой (NОНSО3). Для запуска процесса сернистую кислоту окисляют азотной кислотой согласно уравнениям:SО2 + Н2О = Н2SО3; 3 Н2SO3 + 2 НNО3 = 3 Н2SО4 + 2 NО + Н2О.
Оксиды азота вместе с выхлопными газами (азот и кислород) подаются в башню 2 для окисления монооксида азота в диоксид. Поток газа регулируют таким образом, чтобы 50 % газа проходило через окислительную башню, а 50 % - миновало ее. Таким образом в поглотительную башню попадает газовая смесь, содержащая монооксид и диоксид азота в эквимолярном соотношении, вследствие чего образуется азотистый ангидрид:NО + NО2 = N2О3.
При низкой температуре равновесие сдвигается в сторону образования азотистого ангидрида (N2О3), а при повышении температуры - в сторону образования монооксида и диоксида азота. В поглотительной башне азотистый ангидрид реагирует с концентрированной серной кислотой, образуя нитрозилсерную кислоту N2О3 + 2 Н2SO4 = 2 NОНSО4 + Н2О.
Эта реакция может протекать только с концентрированной серной кислотой. При разбавлении водой нитрозилсерная кислота вновь разлагается на серную кислоту и оксиды азота.
Нитрозилсерная кислота подается на орошение в продукционную башню, где и разлагается водой, а выделившийся азотистый ангидрид окисляет образующуюся в башне сернистую кислоту:
2 NОНSO4 + Н2О = 2 Н2SO4 + N2О3;
SO2 + Н2О = Н2SO3;
Н2SО3 + N2О3 = Н2SO4 + 2 NО.
Монооксид азота вновь направляется в окислительную башню и процесс повторяется.
Оксиды азота, которые не поглотились серной кислотой, улавливаются в санитарной башне (на схеме не показана), в которую подают либо раствор соды (Nа2СО3), либо раствор извести (Са(ОН)2):
N2О3 + Nа2СО3 = 2 NаNО2 + СО2;
2 NО2 + Nа2СО3 = NаNО3 + NаNО2 + СО2;
N2О3 + Са(ОН)2 = Са(NО3)2 + Н2О;
4 NО2 + 2 Са(ОН)2 = Са(NО3)2 + Са(NО2)2 + 2 Н2О.
Потеря оксидов азота компенсируется введением новых порций азотной кислоты.
2 Взаимное влияние атомов в молекуле связано, в первую очередь, сперераспределением электронной плотности в молекуле ПОД влиянием присутствующих в ней атомов или групп атомов, отличающихся по электроотрицательности. В симметричной молекуле, состоящей из схожих по электроотрицательности атомов (при условии, если молекула находится в статическом состоянии), электронная плотность распределена равномерно. Однако под влиянием реагента в органической молекулеможет происходить частичное смещение электронного облака, и особенно это заметно в случае ее несимметричного строения (например, К — СН СНг), а также, когда молекула построена из различающихся поэлектроотрицательности атомов. Такое смещение электронной плотностивсегда происходит в сторону атома (группы) с большей электроотрицательностью это не все, я больше не нашла(
3 Составьте формулы следующих веществ: А) 2,3,4 триметилпентан; Б) 2метил
2этилпентан.
А) CH3-CH(CH3)-CH(CH3)-CH(CH3)-CH3
Б) Н CH3 C2H5 H H
| | | | |
Н--С--C-------C------C--C--H
| | | | |
H H H H H
Билет
1 Амины. АМИНЫ – класс соединений, представляющий собой органические производные аммиака, в котором один, два или три атома водорода замещены органическими группами. Отличительный признак – наличие фрагмента R–N<, где R – органическая группа.
Классификация аминов разнообразна и определяется тем, какой признак строения взят за основу.
В зависимости от числа органических групп, связанных с атомом азота, различают:
первичные амины – одна органическая группа у азота RNH2
вторичные амины – две органических группы у азота R2NH, органические группы могут быть различными R'R"NH
третичные амины – три органических группы у азота R3N или R'R"R"'N
По типу органической группы, связанной с азотом, различают алифатические СH3 – N< и ароматические С6H5 – N< амины, возможны и смешанные варианты.
По числу аминогрупп в молекуле амины делят на моноамины СH3 – NН2, диамины H2N(СH2)2NН2, триамины и т.д. Физические свойства аминов. Первые представители ряда аминов – метиламин CH3NH2, диметиламин (CH3)2NH, триметиламин (CH3)3N и этиламин C2H5NH2 – при комнатной температуре газообразные, далее при увеличении числа атомов в R амины становятся жидкостями, а при увеличении длины цепи R до 10 атомов С – кристаллическими веществами. Растворимость аминов в воде убывает по мере увеличения длины цепи R и при возрастании числа органических групп, связанных с азотом (переход к вторичным и третичным аминам). Запах аминов напоминает запах аммиака, высшие (с большими R) амины практически лишены запаха.
Химические свойства аминов. Отличительная способность аминов – присоединять нейтральные молекулы (например, галогеноводороды HHal, с образованием органоаммониевых солей, подобных аммонийным солям в неорганической химии. Для образования новой связи азот предоставляет неподеленную электронную пару, исполняя роль донора. Участвующий в образовании связи протон Н+ (от галогеноводорода) играет роль акцептора (приемника), такую связь называют донорно-акцепторной (рис. 1). Возникшая ковалентная связь N–H полностью эквивалентна имеющимся в амине связям N–H.
2
Получение спиртов из предельных и
непредельных углеводородов
Вычислите массовую долю водорода (w(H)-?) в
