Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теор осн Статистика ПТО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
321.54 Кб
Скачать

1.4 Средние величины и показатели вариации.

Средние величины – наиболее распространенные обобщающие величины в статистике.

Средней величиной называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно-варьирующему признаку в расчете на единицу совокупности в конкретных условиях места и времени. Такие средние величины, которые обобщают качественно однородные совокупности, называют типическими средними величинами.

На практике часто приходится рассматривать качественно неоднородные совокупности и рассчитывать их обобщающую среднюю величину. Пример: средняя величина национального дохода на душу населения, среднее потребление продуктов и т.д. Такого типа средние называются системными средними. Для того чтобы средняя характеристика была достоверной величиной, необходимо, чтобы ее построение было основано на массовом обобщении фактов.

Основная масса средних величин, которые рассматриваются в статистике, относится к классу так называемых степенных средних.

Общая их формула имеет вид: , где n – число единиц совокупности, m – показатель степени.

В зависимости от этого показателя рассматриваются различные виды средних:

  1. m=1, – средняя арифметическая;

  2. m=2, – средняя квадратическая;

  3. m=3, – средняя кубическая;

  4. m= -1, – средняя гармоническая;

  5. 5) m=0, – средняя геометрическая.

Чем выше показатель степени, тем выше значение средней. Такое свойство называют свойством мажорантности средних.

Средняя арифметическая используется в двух формах:

а) в форме простой:

б) в форме средней арифметической взвешенной:

Формула применяется тогда, когда все частоты равны 1 или равны между собой. Во всех остальных случаях применяется формула.

Средняя гармоническая – это величина обратная средней арифметической из обратных значений признака.

Применяется в 2-х формах:

1) в форме простой:

2) в форме взвешенной:

Мода и медиана – особого рода средние, которые используются для изучения структуры вариационного ряда. Их иногда называют структурными средними, в отличии от рассмотренных ранее степенных средних.

Мода – это величина признака (варианта), которая чаще всего встречается в данной совокупности, т.е. имеет наибольшую частоту.

Мода имеет большое практическое применение, и в ряде случаев только мода может дать характеристику общественных явлений.

Медиана – это варианта, которая находится в середине упорядоченного вариационного ряда.

Медиана показывает количественную границу значения варьирующего признака, которой достигла половина единиц совокупности. Применение медианы наряду со средней или вместо нее целесообразно при наличии в вариационном ряду открытых интервалов, т.к. для вычисления медианы не требуется условное установление границ отрытых интервалов, и поэтому отсутствие сведений о них не влияет на точность вычисления медианы.

Медиану применяют также тогда, когда показатели, которые нужно использовать в качестве весов, неизвестны. Медиану применяют вместо средней арифметической при статических методах контроля качества продукции. Сумма абсолютных отклонений варианты от медианы меньше, чем от любого другого числа.

Рассмотрим расчет моды и медианы в дискретном вариационном ряду:

Стаж, лет

X

Число рабочих, чел

f

Накопленные

частоты

1

2

2

3

4

6

4

5

(11)

8

4

15

10

1

16

ИТОГО:

16

-

Определить моду и медиану.

Мода Мо = 4 года, т.е. наибольшее число рабочих имеют стаж 4 года.

Для того, чтобы вычислить медиану, найдем предварительно половину суммы частот. Если сумма частот является числом нечетным, то мы сначала прибавляем к этой сумме 1, а затем делим пополам:

, Ме=16/2=8

Медианой будет восьмая по счету варианта.

Для того, чтобы найти, какая варианта будет 8-мой по номеру, будем накапливать частоты до тех пор, пока не получим сумму частот, равную или превышающую половину суммы всех частот. Соответствующая варианта и будет медианой. Ме = 4 года, т.е. половина рабочих имеет стаж меньше 4-х лет, половина больше, а 4 – находится в середине ранжированного ряда.

Если сумма накопленных частот против одной варианты равна половине сумме частот, то Ме определяется как средняя арифметическая этой варианты и последующей.

Вычисление моды и медианы в интервальном вариационном ряду:

Мода в интервальном вариационном ряду вычисляется по формуле:

, где ХМ0 - начальная граница модального интервала, hм0 – величина модального интервала, fм0, fм0-1, fм0+1 - соответственно частота модального интервала, предшествующего модальному и последующего.

Модальным называется такой интервал, которому соответствует наибольшая частота.

Для интервального ряда Ме вычисляется по следующей формуле:

, где Хме – нижняя граница медиального интервала, е – величина медиального интервала, – половина суммы частот, е – частота медианного интервала, е-1 – сумма накопленных частот интервала, предшествующего медианному. Медианный интервал – такой интервал, которому соответствует кумулятивная частота, равная или превышающая половину суммы частот.

Показатели вариации, способы их вычисления.

Средняя величина - это обобщающая характеристика варьирующего признака. Однако, характеризуя вариационный ряд в целом, средняя не показывает, как располагаются вокруг нее варианты осредняемого признака, т.е. средняя не характеризует колеблемость признака. Однако, именно колеблемость признака позволяет нам судить о равномерности того или иного процесса или явления или об однородности изучаемой совокупности.

Задача статистики заключается в том, чтобы дать числовое выражение колеблемости признака для более глубокого понимания сущности изучаемых явлений. Для этого в статистике рассчитываются следующие показатели вариации: размах вариации (R); среднее линейное отклонение ( ); дисперсия (σ2); среднее квадратическое отклонение (σ). Кроме них, используют относительный показатель вариации – коэффициент вариации (V).

Размах вариации R вычисляется по формуле: ,

где Xmaх (Хmin) - самое большое (малое) значение, принимаемое единицей совокупности.

Чем больше R, тем менее однородна совокупность по своему составу, по изучаемому признаку и тем менее надежна средняя. Этот показатель является очень приблизительным, т.к. учитывает лишь значения крайних единиц совокупности. Поэтому его применяют редко, лишь в тех случаях, когда особые значения имеют либо наибольшее, либо наименьшее значения варианты.

Стремление составить показатель вариации, который учитывал бы все значения вариант, приводит к среднему линейному отклонению - это средняя арифметическая из абсолютных значений отклонений вариант от их средней арифметической. Применяется в 2 формах:

- простой: , - взвешенной: .

Недостатком этого показателя является то, что он не учитывает знаки отклонений.

Чтобы усилить различия в величинах отклонений, эти отклонения возводятся в квадрат, тогда отклонения меньше 1 уменьшаются, а больше 1- увеличиваются, и вводят новый показатель вариации – дисперсия. Это средний квадрат отклонения вариант от их средней арифметической. Используется в 2 формах:

- простой: ;- взвешенной: /

Среднее квадратическое отклонение (σ):

Так же, как и дисперсия, измеряет абсолютный размер колеблемости признака, но измеряется в тех же единицах, что и варианта. Это не позволяет нам сравнивать между собой различные совокупности. Для этого вводится коэффициент вариации – отношение среднего квадратического отклонения к средней арифметической:

.

Принято считать, что если V > 40%, то это свидетельствуют о большой колеблемости признака в изучаемой совокупности. В этом случае среднее значение ненадежно, недостоверно и по нему нельзя судить о всей совокупности.

Дисперсия равна разности между средним квадратом значений признака и квадратом его средней. , где , .

Эта формула очень часто позволяет упростить вычисление дисперсии и практически является основной расчетной формулой.

Вычисление дисперсии способом моментов.

Способ моментов применяется для упрощения расчетов в том случае, если варианты − большие числа. Первые четыре пункта такие же, как для вычисления средней арифметической способом моментов.

5) Вычисляем момент 2-го порядка: ,

6) Вычисляем дисперсию: .