1.Получение чёрных и цветных металлов
Разнообразие свойств цветных металлов обусловило и разные методы их получения.
Как и черные металлы, цветные получают из рудного концентрата: предварительно обогащенной руды (см. Обогащение полезных ископаемых). Но здесь процесс обогащения сложнее, поскольку в рудах всегда присутствуют и «посторонние» элементы, от которых необходимо избавляться. В первую очередь это сера, железо и кислород.
Сначала из руды путем «обмена» удаляют серу: место серы временно должен занять другой элемент. Обычно «заменителем» оказывается кислород. Делают это при обжиге руды: при высокой температуре металлы «соглашаются» расстаться с серой и принять на ее место кислород. Теперь перед металлургами новое соединение — оксид: соединение металла с кислородом. Иногда серу вытесняют не кислородом, а хлором. Тогда концентрат не обжигают, а хлорируют. Затем необходимо освободить металл от кислорода или хлора. С этим процессом — восстановлением металла — вы можете познакомиться в статье Доменная печь. При высоких температурах в расплав вводят углерод, водород или кремний. Кислород покидает металл и соединяется с этими элементами. Также и для хлора подбирают элементы, которые он «любит»: например, титан или цирконий освобождают от хлора с помощью магния.
Сложность получения цветных металлов хорошо видна на примере меди. Ее плавят в печах, напоминающих мартеновские (см. Мартеновская печь). Но выходит из печей не чистая медь, а так называемый штейн — сплав меди с железом, серой, серебром, золотом, цинком и другими элементами. Этих примесей в штейне 70—80%. Затем штейн заливают в конвертор и продувают через него воздух, в результате чего выжигаются остатки серы и удаляется железо. Занимает этот процесс часы, а не минуты, как в конверторе для переработки чугуна. Штейн превращается в черновую медь, которая содержит всего 1—2% примесей. Но и это слишком много.
Следующая стадия — очистка меди от примесей — огневое рафинирование. Выжигаются последние остатки серы и некоторых других элементов. Зато часть меди вновь окисляется. Чтобы освободить медь от кислорода, в ванну с расплавом погружают деревянные жерди, словно «дразнят» медь. Расплав при этом бурлит и фыркает. Эта операция так и называется — дразнение. Потом в печь забрасывают древесный уголь, который окончательно отбирает от меди кислород. Теперь примесей уже только десятые доли процента, и среди них золото и серебро.
С этим можно было бы мириться. Но электротехнике нужна очень чистая медь. Поэтому в дело вступает электролиз (см. Электрохимические методы обработки). Пластину очищаемой меди — анод — помещают в электролитическую ванну с раствором серной кислоты и медного купороса. Катодом служит лист чистой меди. Электрический ток переносит на катод только медь. Золото, платина и серебро опускаются на дно ванны, а другие примеси остаются в растворе. С помощью электролиза получают и многие другие цветные металлы. В первую очередь алюминий.
Получать алюминий тоже очень сложно. Его рудный концентрат — глинозем (оксид алюминия) плавится при 2050° С (это почти в 2 раза выше температуры плавления меди), да еще не отдает кислород углероду. Поэтому, чтобы снизить температуру плавки, приходится растворять глинозем в расплавленном криолите — минерале, в состав которого входят алюминий, натрий и фтор. Точка плавления этого раствора ниже 1000° С, а с такой температурой уже можно работать.
В электролитической ванне молекулы глинозема распадаются на составные части — ионы алюминия и кислорода. Электрический ток разносит их в разные стороны. Алюминий осаждается на катод, которым является угольное дно самой ванны. Отсюда его потом и собирают.
Так же с помощью электролиза получают титан, магний, кальций, бериллий и другие металлы, разлагая их соединения с хлором. Хлористые соли этих металлов нагревают до 500—700° С и заливают в ванну с электролитом.
Однако цветные металлы можно получать и без нагрева — с помощью жидкости. Есть целая отрасль — гидрометаллургия (см. Металлургия). Металл переводят в раствор с помощью химического растворителя — воды или растворов кислот, щелочей и солей.
Из раствора чистый металл извлекают разными способами. В одних случаях с помощью электролиза (см. Электрический ток), в других прибегают к обменным химическим реакциям, но тоже в электролизной ванне. Суть их в том, что анодом служит какой-либо другой металл, который отдает в раствор свои ионы. А из раствора извлекают ионы нужного металла. Так получают, например, цинк.
В рудных концентратах цветных металлов присутствует ряд элементов. Поэтому у нас есть комбинаты, получающие из концентрата (его называют комплексным или полиметаллическим) около 20 химических элементов. Их последовательно извлекают из раствора каждый раз особым реактивом. Для 'этого применяют и о н и т ы — особые синтетические смолы. Они обладают избирательной способностью: погруженные в соответствующий раствор, Забирают из него только один элемент, скажем ионы золота. Иониты значительно ускоряют и удешевляют получение металлов. С их помощью выгодно даже извлекать драгоценные металлы из морской воды.
В последнее время все большее распространение получило бактериальное выщелачивание. Некоторые виды бактерий растворяют в воде определенные металлы или их соединения, а также вредные примеси (например, мышьяк).
Так называемые тионовые бактерии растворяют медь, уран, цинк, кобальт, марганец и др. Для растворения и извлечения золота применяют гетеротрофные бактерии, выделенные из рудниковых вод золотоносных приисков.
Аппаратура для бактериального выщелачивания очень проста. Это дает возможность резко снизить себестоимость полезных ископаемых и значительно увеличить их добычу за счет использования бедных руд и отвалов из отходов обогащения руды, шлаков и др.
