- •1. Место гис в комплексе геологоразведочных работ. Классификация методов. Решаемые задачи.
- •2.Скважина как объект геофизических исследований. Изменение характе-к пласта при его вскрытии. Подготовка скважины и бурового инструмента к проведению гис.
- •4. Слоистая среда с плоско-параллельными границами раздела. Форма кривых пз, гз.
- •5. Петрофизические основы электрических и электромагнитных методов гис.
- •6.Физические основы метода пс. Решаемые геологические задачи. Физические основы метода.
- •8.Каротаж обычными зондами кс. Классификация методов. Типы зондов. Радиальное распределение сопротивлений в пласте.
- •9.Форма кривых кс для пз и гз для мощного и тонкого пластов.
- •10.Бкз. Технология работ. Двухслойные трёхслойные кривые. Принципы интерпретации.
- •12. Микрозондирование: методические основы, принципы интерпретации.
- •13. Резистивиметрия. Техника и методика работ, решаемые геологические задачи.
- •14.Боковой каротаж.Физические основы, типы знодов, кривые сопротивления.
- •1 6. Зонды бокового микрокаротажа бмк. Принципы работы и интерпретации, решаемые задачи.
- •17. Индукционный каротаж. Физические основы: приближённая теория низкочастотного ик (теория Доля). Скин-эффект, геометричсекие факторы.
- •20.Акустический каротаж. Физические основы. Распределние упругих волн на границе двух сред, типы волн.
- •21. Зонды ак. Принцип конструирования. Характеристика излучателей и приемников. Форма записи материалов.
- •22. Модификации ак по скорости и затуханию. Технология работ, принципы интерпретации, решаемые задачи.
- •23. Ядерно-физические методы гис. Классификация. Их роль в комплексе гис.
- •24. Ядерные излучения и их взаимодействия с горными породами. Характеристики и параметры.
- •25. Основные элементы и характеристика аппаратуры для ядерно-физических методов.
- •26. Гамма каротаж. Интегральная и спектрометрическая модификации. Физические основы, технология работ, принципы обработки.
- •27. Ггк (гамма-гамма-каротаж). Модификации ггк. Физические основы, технологии работ, принципы интерпретации, решаемые задачи.
- •28. Нейтронный каротаж. Модификации. Физические основы. Основные элементы аппаратуры. Технология работ.
- •29. Нейтрон-нейтронный каротаж по тепловым и надтепловым нейтронам. Физические основы, технология работ, принципы интерпретации, решаемые задачи.
- •30. Нейтронный-гамма-каротаж (нгк). Физические основы, технология работ, принципы интерпретации, решаемые задачи.
- •31. Импульсный нейтрон-нейтронный каротаж (иннк). Специфика метода. Основы интерпретации, решаемые задачи.
- •33. Термический каротаж. Физические основы, методика работ, принципы интерпритации, решаемые задачи.
- •36. Методы исследования скважин в процессе бурения. Классификация методов и их основы. Роль в комплекте гис.
- •41. Методы изучения технического состояния скважин: инклинометрия, кавернометрия, профилеметрия.
- •42.Геофизические методы контроля качества цементирования скважин. Классификация методов, специфика работ, принципы интерпритации.
- •43. Геофизический контроль состояния обсадных колонн, выявление мест притоков, поглощения и затрубной циркуляции жидкости.
- •44. Гис при контроле разработке нефтегазовых месторождений. Контроль перемещения внк (гвк), исследование состояния жидкости, изучение профилей притока и поглощений.
- •46. Отбор проб пластового флюида из стенок скважины: испытатели пластов на трубах и опробователи на кабеле.
- •48. Промыслово-геофизическая аппаратура и оборудование исследований с скв.
31. Импульсный нейтрон-нейтронный каротаж (иннк). Специфика метода. Основы интерпретации, решаемые задачи.
Импульсный нейтрон-нейтронный каротаж принципиально отличается от остальных тем, что породу облучают не непрерывным потоком нейтронов, а короткими вспышками — импульсами. В ответ регистрируют не столько сами нейтроны от породы, сколько исследуют их время жизни. По этому показателю породы принципиально отличаются.
Среднее время жизни надтепловых нейтронов зависит от содержания в породе поглотителей (хлора, например) и водорода. Возможные значения:
• 0,3-0,6 мс — данное время жизни характерно для пористых пластов, насыщенных пресной водой или нефтью
• 0,11-0,33 мс — данные значения характерны для пластов, насыщенных минерализованной водой
• 0,6-0,8 мс — по такому времени жизни можно говорить о том, что пласт насыщен природным газом.
Где ℇз-эффективное макроскопическое сечение захвата n, выражающее способность среды поглощать n.
Сравнение ИННК и ННК. I — наблюдённая кривая, II — теоретическое поле. ИННК уверенно отбивает контакт воды с нефтью в трещиноватом карбонатном пласте. ННК-Т, при этом, определил только наличие самого пласта.
Благодаря такой достаточно чёткой разнице (по времени) на диаграммах ИННК удаётся не только отличить водяной пласт от нефтяного, но даже можно найти границу водо-нефтяного контакта (ВНК), если в пласте одновременно есть и вода, и нефть. Часто приходится искать и границу газа с нефтью (ГНК), в то время как ННК не способен эти границы различать.
Источником быстрых n является измерительная трубка, в которой для получения быстрых n используется ядерная реакция в мишени трития, бомбардируемая ядрами дейтерия, при этом осуществляется синтез ядер гелия, сопровождаемый испусканием n.
D+T=n+α
Ускорительная трубка - это стеклянный балон, заполненный дейтерием. Ионизация дейтерия осуществляется электронами, выделяющимися накалённым вольфрамовым катодом (2). Электроды ускоряютсяцилиндрическим анодом (4) и под действием продольного магнитного поля, образованного катушкой (3) перемещаются вдоль анода по спиральным траекториям. Высоковольтный электрод (5), в котором расположена мишень (6). Питание переменным синусоидальным напряжением со вторичной обмотки высоковольтного трансформатора (ТР). В генераторе имеются 2 натекателя(1), изготовленных из титановой проволоки с примесью дейтерия.
33. Термический каротаж. Физические основы, методика работ, принципы интерпритации, решаемые задачи.
Метод ГИС, заключающийся в изучении пространственного или пространственно-временного распределения температуры по стволу скважины с целью решения геологических и технологических задач, называют термическим каротажем. Термический каротаж базируется на связи температуры с теплофизическими свойствами горных пород, параметрами естественного теплового поля Земли, а также локальных естественных и искусственных тепловых полей.
Температуропроводность горных пород — увеличивается с возрастанием плотности за счет еще более быстрого роста теплопроводности. При возрастании влажности температуропроводность сначала растет, благодаря увеличению теплопроводности, а затем падает из-за увеличения теплоемкости. Газозасыщение приводит к существенному снижению температуропроводности.
При термических исследованиях скважин применяют методики естественного и искусственного тепловых полей.
Методика естественного теплового поля основана на изучении пространственного распределения регионального теплового поля Земли или локальных тепловых полей естественного происхождения.
Методика искусственного теплового поля основана главным образом на изучении пространственно-временного распределения теплового поля, созданного путем быстрого заполнения скважины промывочной жидкостью, температура которой отличается от температуры пород. Чем выше температуропроводность пород, тем быстрее изменяется во времени температура промывочной жидкости, что и определяет возможность расчленения разреза, а в благоприятных условиях — определения температуропроводности пород.
Задачи, решаемые с помощью термического каротажа, весьма разнообразны. На стадиях региональных и зональных исследований термический каротаж используют для решения структурно-тектонических задач. С этой целью по результатам исследования отдельных скважин, соединяя точки равных температур геоизотермами, строят геотермические профили, карты геоизотерм на заданной глубине, а также карты равных глубин, соответствующих данной температуре — карты термоизогипс. Частный случай карт термоизогипс — карты гипсометрии зоны вечной мерзлоты.
