- •Лекция 1
- •1. Основы сапр
- •2. Компоненты сапр, основные концепции и структура программного обеспечения
- •2.1. Аппаратное обеспечение
- •2.2. Программное обеспечение сапр
- •Решает ли программное обеспечение конкретные производственные задачи, стоящие перед вашим производственным подразделением?
- •Повысит ли система производительность и качество производства при решении поставленных задач, окупится ли она в приемлемый срок?
- •3. Системы автоматизированной разработки чертежей
- •Графические библиотеки
- •3.3. Окна и видовые экраны
- •Примитивы
- •Настройка параметров чертежа
- •Указать положение всех точек объекта в пространстве;
- •Определить положение их образов на мониторе.
- •3.4. Базовые функции черчения на примере Autocad
- •5. Цифровое и математическое
- •5.1. Виды цифровых моделей местности
- •5.2. Методы построения цифровых моделей местности и их точность
- •5.3. Математические модели местности
- •5.3.2. Способы представления рельефа нелинейными методами Полиномиальные методы
- •Мультиквадриковый способ аппроксимации топографической поверхности
- •Применение цифровых моделей местности в автоматизированных системах различного назначения
- •6. Современные технологии сбора и обработки топографической информации
- •7. Обработка данных в программном комплексе credo
- •Режимы и методы трассировки
- •8. Построение регулярной цмр в Golden Software Surfer 8
- •8.2. Картографирование полученных моделей
- •8.3. Операции с поверхностями
- •9. Вычисление объемов земляных работ
- •9.2. Площадное камеральное проектирование
- •9.3. Проектирование горизонтальной площадки
5.1. Виды цифровых моделей местности
Конечной целью изысканий для строительства линейных инженерных объектов (автомобильных, лесовозных дорог, каналов, коммуникаций и т. д.) является получение топографического плана местности в пределах широкой полосы варьирования конкурентных вариантов трассы и цифровой модели рельефа и геологического строения того же участка местности (ЦММ) в единой системе координат. По Ц М М и получаемым на их основе математическим моделям местности ( М М М ) в конечном итоге осуществляют системное, автоматизированное проектирование всех конкурентных вариантов трассы линейных сооружений. Трудовые затраты на получение с Ц М М необходимой для проектирования информации (профили земли по оси трассы, поперечные профили земли, геологические разрезы и т. д.) сокращаются в несколько десятков раз по сравнению с получением той же информации при использовании топографических планов и стереоскопических моделей по традиционной технологии.
При цифровом моделировании рельефа и геологического строения местности в зависимости от сложности рельефа, ситуационных особенностей местности, способа производства изысканий, задач проектирования, наличия парка современных геодезических приборов, приборов спутниковой навигации, средств геофизической подповерхностной разведки, средств автоматизации и вычислительной техники могут быть сформированы ЦММ с использованием самых разнообразных принципов.
Вопросам разработки различных видов ЦММ было посвящено большое количество исследований. При этом все известные ЦММ можно разбить на три большие группы: регулярные, нерегулярные и статистические.
Регулярные ЦММ
Регулярные ЦММ создают путем размещения точек в узлах геометрических сеток различной формы (треугольных, прямоугольных, шестиугольных), накладываемых на аппроксимируемую поверхность с заданным шагом. Наиболее часто применяют ЦММ с размещением исходных точек в узлах сеток квадратов (рис. 5.3,а) или равносторонних треугольников (рис. 5.3, б). Регулярные ЦММ в узлах правильных шестиугольных сеток (рис. 5.3, в) нашли применение при проектировании нефтепромысловых дорог в условиях равнинного рельефа Западной Сибири.
Массив исходных данных для регулярных ЦММ (рис. 5.3, а—в) может быть представлен в следующем виде:
где F— шаг сетки; m— число точек по горизонтали; п — число строк по вертикали; Hnm — высоты точек в узлах сетки.
Регулярные модели весьма эффективно использовать при проектировании вертикальной планировки городских улиц, площадей, аэродромов и других инженерных объектов на участках местности с равнинным рельефом. Однако опыт использования ЦММ с регулярным массивом исходных данных показал, что требуемая точность аппроксимации рельефа достигается лишь при очень высокой плотности точек местности, которая в зависимости от категории рельефа должна быть в 5—20 раз выше по сравнению с нерегулярными ЦММ. Появление высокопроизводительных дигитайзеров и коордиметров с автоматической регистрацией информации по заданному интервалу длины или времени, тем не менее, делает использование регулярных моделей (5.1) весьма перспективным.
Нерегулярные ЦММ, представленные большим числом типов, нашли широкое применение в практике автоматизированного проектирования объектов строительства. Весьма часто используют Ц М М , построенные по поперечникам к магистральному ходу (рис. 5.1, г). Массив исходных данных для Ц М М этого типа представляют в следующем виде:
г
д е
— расстояния между началом трассы
и точками пересечения ее оси и
соответствующими поперечниками;
— расстояния между исходными точками
ЦММ на поперечниках и осью трассы,
принимаемые положительными влево от
трассы и отрицательными — вправо;
— высоты исходных точек.
Поскольку магистральный ход в общем случае может иметь углы поворота, для представления нерегулярного массива (5.2) необходимо еще задавать и координаты вершин углов поворота. Информацию для криволинейной трассы представляют уже в трехкоординатном виде.
Ц М М , построенные по поперечникам к оси магистрального хода или к оси трассы, находили широкое применение в начальный период перехода на системное, автоматизированное проектирование линейных инженерных объектов, когда исходная изыскательская информация собирается еще во многом в соответствии со старой технологией изысканий, а также при разработке проектов реконструкции автомобильных дорог, каналов и т. д.
При наличии крупномасштабных топографических планов и карт часто оказывается весьма эффективным создание Ц М М с массивом исходных точек, размещаемых на горизонталях с регистрацией их плановых координат через определенные интервалы длины (рис. 5.1).
Структурные Ц М М используют главным образом при невысокой степени автоматизации процесса сбора и регистрации исходной информации (например, при использовании материалов обычной тахеометрической съемки, при ручной либо полуавтоматической фотограмметрической обработке снимков, при дигитализации топографических планов и карт и т. д.).
В зависимости от вида исходного материала, используемого для формирования Ц М М , в практике автоматизированного проектирования применяют и другие виды нерегулярных цифровых моделей, например, ЦММ, построенных на линиях, параллельных координатным осям стереофотограмметрического прибора (рис. 5.1, з), при использовании для формирования массивов точек материалов аэрофотосъемок.
Статистические ЦММ предполагают в своей основе нелинейную интерполяцию высот поверхностями второго, третьего и т. д. порядков. При создании массива исходных данных статистической Ц М М точки для ее формирования выбирают в зависимости от случайного распределения, близкого к равномерному (рис. 5.1, ж).
Статистические модели являются во многом универсальными. Сфера их применения весьма широка и не ограничивается какими-либо категориями рельефа местности, наличием того или иного исходного материала создания Ц М М и наличием тех или иных приборов. Массив исходных точек статистической Ц М М представляют в виде:
—координаты
точек статистической модели.
