- •2.Цикл лимонной кислоты, схема процесса. Связь цикла с цепью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
- •3. Роль минеральных веществ
- •1.Аминокислоты, входящие в состав белков, их строение и свойства. Биологическая роль аминокислот. Пептиды.
- •2. Оринитиновый цикл мочевинообразования.
- •1.Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
- •1.Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
- •1. Классификация и номенклатура ферментов, примеры
- •3. Регуляция водно-солевого обмена. Строение, механизм действия и функции альдостерона и вазопрессина. Роль системы ренин-ангиотензин-альдостерон. Предсердный натриуретический фактор
- •1 Ингибирование активности ферментов: обратимое (конкурентное и неконкурентное) и необратимое. Лекарственные препараты как ингибиторы ферментов.
- •3 Гормоны гипоталамуса и передней доли гипофиза, химическая природа и биологическая роль.
- •2 Дезаминирование аминокислот: прямое, непрямое. Виды прямого дезаминирования.
- •1.Методы фракционирования белков: осаждение солями и органическими растворителями, гель-фильтрация, электрофорез, ионообменная и аффинная хроматографии.
- •3. Клетки-мишени и клеточные рецепторы гормонов
- •1. Физико-химические свойства белков. Молекулярная масса, размеры и форма, растворимость, ионизация и гидратация. Денатурация, признаки и факторы ее вызывающие.
- •1 Липиды. Общая характеристика. Биологическая роль. Классификация липидов. Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы.
1.Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы (коферментах) и/или в ионах металлов (кофакторах).
Роль металлов в ферментативном катализеНе менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.Участие в электрофильном катализеНаиболее часто эту функцию выполняют ионы металлов с переменной валентностью, имеющие свободную d-орбиталь и выступающиев качестве электрофилов. Это, в первую очередь, такие металлы, как Zn2+, Fe2+, Mn2+, Cu2+. Ионы щёлочно-земельных металлов, такие как Na+ и К+, не обладают этим свойством. Участие в окислительно-восстановительных реакцияхИоны металлов с переменной валентностью могут также участвовать в переносе электронов. Например, в цитохромах (гемсодержащих белках) ион железа способен присоединять и отдавать один электрон. Кофермент, локализуясь в каталитическом участке активного центра, принимает непосредственное участие в химической реакции, выступая в качестве акцептора и донора химических группировок, атомов, электронов. Кофермент может быть связан с белковой частью молекулы ковалентными и нековалентными связями. В первом случае он называется простетической группой (например, FAD, FMN, биотин, липоевая кислота). Во втором случае кофермент взаимодействует с ферментом только на время химической реакции и может рассматриваться в качестве второго субстрата. Примеры - NAD+, NADP+.Химическая природа коферментов, их функции в ферментативных реакциях чрезвычайно разнообразны. Традиционно к коферментам относят производные витаминов, хотя помимо них есть значительный класс небелковых соединений, принимающих участие впроявлении каталитической функции ферментов.К коферментам относят следующие соединения:производные витаминов;гемы, входящие в состав цитохромов, каталазы, пероксидазы, гуанилатциклазы, NO-синтазы и являющиеся простетической группой ферментов. Витамин В6, пиридоксин Этот витамин в виде коферментов ПАЛФ (пиридоксальфосфата) и ПАМФ(пиридоксаминфосфата) входит в состав ферментов переаминирования, дезаминирования и декарбоксилирования аминокислот. В реакциях с участием пиридоксина, осуществляется всасывание и транспорт аминокислот, балансируется аминокислотный состав организма.
2 Метаболизм эндогенных и чужеродных токсичных веществ. Обезвреживание большинства ксенобиотиков происходит в 2 фазы:I – фаза химической модификации;II – фаза коньюгации.Химическая модификация – это процесс ферментативной модификации исходной структуры ксенобиотика, в результате которой происходит: разрыв внутримолекулярных связей;присоединение к молекуле дополнительных функциональных групп (-СН3, -ОН, -NH2),удаление функциональных групп путем гидролиза.Типы модификаций:окислениемикросомальное,пероксисомальное);восстановление;изомеризация;ацетилирование, метилирование, гидроксилирование; гидролиз и т.д.Система обезвреживания включает множество разнообразных ферментов (оксидоредуктазы, изомеразы, лиазы, гидролазы), под действием которых практически любой ксенобиотик может быть модифицирован. Наиболее активны ферменты метаболизма ксенобиотиков в печени.В результате химической модификации, как правило, ксенобиотики становятся более гидрофильными, повышается их растворимость, и они легче выделяются из организма с мочой. Кроме этого, дополнительные функциональные группы необходимы, чтобы вещество вступило в фазу конъюгации.Коньюгация – процесс образования ковалентных связей между ксенобиотиком и эндогенным субстратом. Образование связей происходит, как правило, по ОН- или NH2-группе ксенобиотика. Образовавшийся коньюгат малотоксичен и легко выводится из организма с мочой.Выделяют глюкуронидную, сульфатную, тиосульфатную, ацетильную коньюгации. В них принимают участие эндогенные соединения, образующиеся в организме с затратой энергии: УДФ-глюкуронат, ФАФС, тиосульфат, ацетил-КоА. Цитохром Р450 - гемопротеин, содержит простетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Микросомальные оксидазы - ферменты, локализованные в мембранах гладкого ЭР, функционирующие в комплексе с двумя внемитохондриальными ЦПЭ. Ферменты, катализирующие восстановление одного атома молекулы О2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ.
3. Гормоны щитовидной железы. зоба. В щитовидной железе синтезируются гормоны - йодированные производные тирозина. Они объединены общим названием йодтирони-ны. К ним относят 3,5,3'-трийодтиронин (трийодтиронин, Т3) и 3,5,3',5'-тетрайодтиронин (Т4), или тироксин.Йодтиронины участвуют в регуляции многих процессов метаболизма, развития, клеточной дифференцировки, в регуляции экспрессии генов. Йодтиронины синтезируются в составе белка тиреоглобулина (Тг) в фолликулах, Тиреоглобулин - гликопротеин Синтезируется на рибосомах шероховатого ЭР в виде претиреоглобулина, затем переносится в цистерны ЭР, где происходит формирование вторичной и третичной структуры, включая процессы гликозилирования. Из цистерн ЭР Тиреоглобулин поступает в аппарат Гольджи, включается в состав секреторных гранул и секретируется во внеклеточный коллоид, где происходит йодирование остатков тирозина и образование йодтиронинов.Йодирование тиреоглобулина и образование йодтиронинов осуществляется в несколько этапов: транспорт йода в клетки щитовидной железы; окисление йода; йодирование остатков тирозина; образование йодтиронинов; транспорт йодтиронинов в кровь.
Билет 18
