Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Квант 1,2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
552.45 Кб
Скачать

Оптическая пирометрия

Совокупность методов измерения высоких температур, использующие зависимость спектральной плотности излучательности или интегральной излучательности тел от температуры называется оптической пирометрией. Приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра называются пирометрами. В зависимости от того, какой закон теплового излучения используется при измерении температуры тел, различают: радиационную, цветовую и яркостную температуры.

Радиационная температура. Это такая температура абсолютно черного тела, при которой его излучательность равна излучательности исследуемого тела . В этом случае регистрируется излучательность исследуемого тела и по закону Стефана-Больцмана вычисляется его радиационная температура:

Радиационная температура всегда меньше истинной температуры тела Т. Предположим, что исследуемое тело является серым. Тогда можно записать:

С другой стороны:

Тогда:

Цветовая температура. Для серых тел (или тел, близких к ним по свойствам) спектральная плотность излучательности равна:

где . Следовательно, распределение энергии в спектре излучения серого тела такое же, как и в спектре абсолютно черного тела, имеющего такую же температуру. Поэтому к серым телам применим закон Вина, то есть, зная длину волны , соответствующую максимальной спектральной плотности излучательности исследуемого тела, можно определить его температуру:

которая называется цветовой температурой.

Для серых тел цветовая температура совпадает с истинной температурой. Для тел, которые сильно отличаются от серых (например, обладающие селективным поглощением), понятие цветовой температурой теряет смысл. Измерением цветовой температуры осуществляется оценка температуры Солнца и звезд.

Яркостная температура. Яркостная температура – температура абсолютно черного тела, при которой для определенной длины волны его спектральная плотность излучательности равна спектральной плотности излучательности исследуемого тела, то есть:

(1.13)

где Т – истинная температура тела. По закону Кирхгофа, для исследуемого тела при данной длине волны излучения справедливо:

или, учитывая (1.13), получаем:

Так как для тел, свойства которых далеки от свойств абсолютно черного тела, , то , следовательно, , то есть истинная температура всегда выше яркостной.

Несмотря на некоторую неточность в измерении температуры, пирометрические методы имеют значительные преимущества перед прочими методами измерения. Прежде всего, эти методы являются бесконтактными. И, наконец, позволяют производить измерения температуры тел, удаленных от нас на значительные (космические) расстояния.

Фотоэффект

Наряду с законами теплового излучения в конце XIX века было открыто и изучено оптическое явление, не укладывающееся в рамки законов классической физики. Это – явление фотоэлектрического эффекта, или, короче, фотоэффекта. Различают фотоэффект внешний, внутренний и вентильный. Внешним фотоэффектом называют испускание электронов веществом (металлом, полупроводником, диэлектриком) под действием электромагнитного излучения.

В 1887 г. Герц заметил, что ультрафиолетовое излучение в области ис

крового промежутка облегчает разряд. В 1888 г. Гальвакс установил, что причиной этого является появление при облучении свободных зарядов. Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис.4. Два электрода (катод К из исследуемого материала и анод А – в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к батарее так, чтобы с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени:

- наиболее эффективное действие оказывает ультрафиолетовое излучение;

-под действием света вещество теряет только отрицательные заряды;

-сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Томсон (1898 г.) измерил удельный заряд частиц, испускаемых под действием света (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

На рис.5 приведена вольт-амперная характеристика фотоэффекта – зависимость фототока IA от напряжения UA между электродами. Приведенные кривые соответствуют двум разным освещенностям катода (двум различным температурам катода), но одинаковой частоте падающего на катод света. С увеличением напряжения фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Из пологого характера кривых следует, что электроны вылетают из катода с разными скоростями. Максимальное значение – фототок насыщения – определяется таким значением напряжения, при котором все электроны, испускаемые катодом, достигают анода.

Из вольтамперной характеристики следует, что при нулевом значении напряжения фототок не исчезает. Это означает, что электроны, выбитые светом из катода, обладают некоторой начальной скоростью, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U0. При U=U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью Vmax,, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

(1.14)

Измерив задерживающее напряжение, можно определить максимальные значения скорости и кинетической энергии фотоэлектронов.

Внешний фотоэффект подчиняется следующим трем законам, полученным из обобщения опытных данных: