Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-blok_Vosstanovlen.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
124.69 Кб
Скачать
  1. Мода. Медиана.

Медиана и мода в отличие от средней арифмети–ческой не погашают индивидуальных различий в зна–чениях варьирующего признака и поэтому являются дополнительными и очень важными характеристика–ми статистической совокупности. На практике они ча–сто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содер–жит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

где:

  • — значение моды

  • — нижняя граница модального интервала

  • — величина интервала

  • — частота модального интервала

  • — частота интервала, предшествующего модальному

  • — частота интервала, следующего за модальным

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот  , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

Ме = (n(число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

где:

  • — искомая медиана

  • — нижняя граница интервала, который содержит медиану

  • — величина интервала

  • — сумма частот или число членов ряда

  • - сумма накопленных частот интервалов, предшествующих медианному

  • — частота медианного интервала

  1. Многофакторный дисперсионный анализ.

Многофакторный анализ позволяет проверить влияние нескольких факторов на зависимую переменную. Линейная модель многофакторной модели имеет вид

,

где:

  •  — результат измерения -го параметра;

  •  — среднее для -го параметра;

  •  — систематическая ошибка измерения -го параметра в группе по методу ;

  •  — систематическая ошибка измерения -го параметра в группе по методу ;

  •  — систематическая ошибка измерения -го параметра в группе в силу комбинации методов и ;

  •  — случайная ошибка измерения -го параметра.

В рассмотренном выше простом примере вы могли бы сразу вычислить t-критерий для независимых выборок, используя соответствующую опцию модуля Основные статистики и таблицы. Полученные результаты, естественно, совпадут с результатами дисперсионного анализа. Однако дисперсионный анализ содержит гораздо более гибкие и мощные технические средства, позволяющие исследовать планы практически неограниченной сложности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]