- •1. Аналитический обзор
- •Применение нанотехнологий в медицине
- •1.1.1 Наноматериалы
- •1.1.2 Наночастицы
- •1.1.3 Микро- и нанокапсулы
- •1.1.4 Нанотехнологические сенсоры и анализаторы
- •1.1.5 Медицинские применения сканирующих зондовых микроскопов
- •1.1.6 Наноманипуляторы
- •1.1.7 Микро- и наноустройства
- •1..2 Примеры применения наночастиц металлов
- •Биомедицинские применения d-металлов
- •1.2.2 Биомедицинские применения золотых наночастиц: современное состояние и перспективы развития.
- •1.2.4. Магнетиты
- •Новые дендримерные наночастицы, в состав которых входят направляющие молекулы и красители, способны находить в организме злокачественные клетки, специфически связываться с ними и уничтожать их.
- •1.3 Воздействие наночастиц на организм человека
- •2 Способы получения нанопорошков металлов
- •2.1 Производство металлических порошков электролизом
- •2.2 Электроосаждение на неподвижных твердых электродах
- •2.3 Выделение высокодисперсных порошков на жидких металлических катодах
- •2.4 Осаждение высокодисперсных металлов в двухслойной ванне
- •2.5 Электролиз расплавленных сред
- •2.6 Сравнение способов получения нанопорошков металлов
- •2. Получение монокристаллов в двухслойной ванне
- •2.1 Особенности процесса и его назначение
- •2.2 Верхний слой двухслойной ванны
- •2.3 Нижний слой двухслойной ванны
- •2.4 Форма нитевидных кристаллов, получаемых в двухслойной ванне
- •2.5 Плотность тока и изменение потенциала катода двухслойной ванны при электрокристаллизации
- •3 Устройства для получения порошков с нитевидными кристаллами
- •3.1 Основные требования к конструкции устройств
- •3.2 Катоды двухслойной ванны
- •3.2.1 Вращающиеся дисковые катоды
- •3.2.2 Электролизёр с неподвижным решётчатым катодом
- •3.3 Обработка порошка после его получения
- •4 Аппаратура и методика эксперимента
- •4.1 Приготовление растворов и условия эксперимента
- •5 Экспериментальная часть
- •5.1 Результаты исследований
- •5.1.1 Влияние условий электролиза на образование нитевидных порошков в двухслойной ванне
1.1.2 Наночастицы
Американская компания C-Sixty Inc. Проводит предклинические испытания средств на основе фуллереновых наносфер С60 с упорядоченно расположенными на их поверхности химическими группами. Эти группы могут быть подобраны таким образом, чтобы связываться с заранее выбранными биологическими мишенями. Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Например, наносфера может содержать внутри атом радиоактивного элемента, а на поверхности - группы, позволяющие ей прикрепиться к раковой клетке.
Подобные разработки проводятся и в России. В Институте экспериментальной медицины (Санкт-Петербург) использовали аддукт фуллерена с поливинилпирролидоном (ПВП). Это соединение хорошо растворимо в воде, а полости в его структуре близки по размерам молекулам С60. Полости легко заполняются молекулами фуллерена, и в результате образуется водорастворимый аддукт с высокой антивирусной активностью. Поскольку сам ПВП не обладает антивирусным действием, вся активность приписывается содержащимся в аддукте молекулам С60.
В пересчете на фуллерен его эффективная доза составляет примерно 5 мкг/мл, что значительно ниже соответствующего показателя для ремантадина (25 мкг/мл), традиционно используемого в борьбе с вирусом гриппа. В отличие от ремантадина, который наиболее эффективен в ранний период заражения, продукт С60/ПВП обладает устойчивым действием в течение всего цикла размножения вируса. Другая отличительная особенность сконструированного препарата - его эффективность против вируса гриппа А- и В-типа, в то время как ремантадин действует только на первый тип.
Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определенных клеток и показывающее их расположение в организме.
Особый интерес вызывают дендримеры. Они представляют собой новый тип полимеров, имеющих не привычное линейное, а ветвящееся строение. Собственно говоря, первое соединение с такой структурой было получено еще в 50-е годы, а основные методы их синтеза разработаны в основном в 80-е годы. Термин "дендримеры" появился раньше, чем "нанотехнология", и первое время они между собой не ассоциировались. Однако последнее время дендримеры все чаще упоминаются именно в контексте их нанотехнологических (и наномедицинских) применений.
Это связано с целым рядом особых свойств, которыми обладают дендримерные соединения. Среди них:
Предсказуемые, контролируемые и воспроизводимые с большой точностью размеры макромолекул;
Наличие в макромолекулах каналов и пор, имеющих хорошо воспроизводимые формы и размеры;
Способность к высокоизбирательной инкапсуляции и иммобилизации низкомолекулярных веществ с образованием супрамолекулярных конструкций "гость-хозяин".
1.1.3 Микро- и нанокапсулы
Для доставки лекарственных средств в нужное место организма могут быть использованы миниатюрные (~1 мк) капсулы с нанопорами. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа. Использование пор с размером порядка 6 нм позволяет защитить содержимое капсулы от воздействия иммунной системы организма. Это дает возможность помещать в капсулы инсулин-продуцирующие клетки животного, которые иначе были бы отторгнуты организмом.
Микроскопические капсулы сравнительно простой конструкции могут взять на себя также дублирование и расширение естественных возможностей организма. Примером такой концепции может послужить предложенный Р. Фрейтасом респироцит - искусственный носитель кислорода и двуокиси углерода, значительно превосходящий по своим возможностям как эритроциты крови, так и существующие кровезаменители (например, на основе эмульсий фтороуглеродов). Более подробно возможная конструкция респироцита будет рассмотрена ниже.
