- •Магнитные элементы электронной техники
- •Введение
- •Глава 1 Электромагнетизм
- •Глава 2 Электромагнетизм. Процессы при перемагничивании ферромагнетиков Общие сведения
- •2.1 Единицы магнитных величин и магнитные свойства веществ
- •2.2 Строение атомов и кристаллов твердых веществ
- •2.3 Виды магнитных материалов по их магнитным свойствам
- •2.3.1. Диамагнетики
- •2.3.2. Парамагнетики
- •2.3.3 Ферромагнетики
- •2.3.4 Антиферромагнетики
- •2.4 Доменная структура и магнитная анизотропия ферромагнетиков
- •2.5. Кривые намагничивания и петли гистерезиса
- •Глава 3 Перемагничивание сердечника. Математическое моделирование. Общие сведения
- •3.1. Электрические и магнитные величины для сердечника
- •3.1.2.4. Необратимые процессы вращения самопроизвольной намагниченности.
- •3.1.2.5. Магнитная вязкость и скорость перемагничивания ферромагнетиков (не изучаем)
- •3.2. Моделирование сердечника и процессов в нем.
- •3.2.1. Методы моделирования процессов в сердечнике.
- •3.2.1.2. Эквивалентные преобразования ферромагнитных цепей (не изучаем)
- •2.2.1.4. Метод физического подобия. (не изучаем)
- •3.2.2. Основные упрощения и допущения.
- •3.2.2.1. Основные допущения при составлении моделей поля.
- •2.2.2.3. Методы численного моделирования электромагнитного поля (не изучаем)
- •2.2.2.4. Упрощенное моделирование. (не изучаем)
- •Глава 4 Трансформаторы Общие сведения
- •4.1. Трансформатор. Конструкция и принцип действия
- •4.1.1. Общие сведения
- •4.1.2. Конструкция трансформатора
- •Магнитопроводы трансформаторов
- •4.2. Типы трансформаторов
- •4.2.2.Специальные типы трансформаторов
- •4.3. Область применения трансформаторов
- •4.4. Потери и коэффициент полезного действия
- •4.6 Методика расчета трансформатора
- •Глава 6 Трансформаторные датчики. Индукционные преобразователи
- •6.1 Общие сведения
- •6.2 Трансформаторные датчики
- •6.2.1. Простейший трансформаторный датчик
- •6.3 Датчики
- •6.2.2. Датчик с перемещающимся якорем
- •6.2.3. Датчик с перемещающимся экраном.
- •6.2.4 Датчики с подвижной обмоткой
- •6.2.5. Дифференциальные трансформаторные датчики
- •6.2.6. Датчики с изменяемой площадью зазора.
- •6.2.7. Датчики с поворотной рамкой.
- •6.2.8. Датчик с распределенными магнитными параметрами
- •Глава 7 Магнитные накопители энергии - дроссели Общие сведения
- •7.1 Дроссели переменного тока
- •7.2 Сглаживающий дроссель
- •7.2.1.Применение и конструкция дросселя насыщения.
- •7.2.2 Электромагнитная и расчётная мощность сглаживающего дросселя.
- •7.4 Дроссели насыщения
- •Глава 8. Магнитные усилители (материал в методичке к лр)
- •8.1.4 Материалы магнитопроводов магнитных усилителей
- •Глава 9 Стандартизированные ряды магнитных элементов. Общие сведения
- •9.1. Унифицированные ряды шихтованных сердечников (шс).
- •9.2. Унифицированные ряды ленточных сердечников.
- •9.3. Прессованные сердечники.
- •9.4 Рекомендации по применению унифицированных рядов сердечников
- •Глава 10 Электромагниты постоянного и переменного тока Общие сведения
- •10.1 Электромагниты. Основные части электромагнитов.
- •10.2 Основные характеристики электромагнитов. Сравнение электромагнитов постоянного и переменного тока.
- •Электромагниты соленоидного типа
- •Трехфазные электромагниты.
- •Глава 11 Датчики тока и поля
- •11.1 Пояс роговского
- •11.2 Датчики тока на основе датчиков холла
- •11.2.1 Описание эффекта Холла
- •11.2.2. Датчики прямого усиления, основанные на эффекте Холла
- •11.2.3. Датчики компенсационного типа, основанные на эффекте Холла
- •Список используемой литературы
Глава 4 Трансформаторы Общие сведения
Одним из важнейших преимуществ переменного тока перед постоянным является легкость и простота, с которой можно преобразовать переменный ток одного напряжения в переменный ток другого напряжения. Достигается это посредством простого устройства – трансформатора, созданного в 1876 г. русским ученым Павлом Николаевичем Яблочковым.
П.Н. Яблочков предложил способ “дробления света” для своих свечей при помощи трансформатора. В дальнейшем конструкцию трансформаторов разрабатывал другой русский изобретатель И.Ф. Усагин, который предложил применять трансформаторы для питания не только свечей Яблочкова, но и других приемников.
В дальнейшем несколько конструкций однофазных трансформаторов с замкнутым магнитопроводом были созданы венгерскими электротехниками О. Блати, М. Дери и К. Циперновским. Для развития трансформаторостроения и вообще электромашиностроения большое значение имели работы профессора А.Г. Столетов по исследованию магнитных свойств стали и расчету магнитных цепей.
Важная роль в развитии электротехники принадлежит М.О. Доливо-Добровольскому. Он разработал основы теории многофазных и, в частности, трехфазных переменных токов и создал первые трехфазные электрические машины и трансформаторы. Трехфазный трансформатор современной формы с параллельными стержнями, расположенными в одной плоскости, был сконструирован им в 1891 г. С тех пор происходило дальнейшее конструктивное усовершенствования трансформаторов, уменьшалась их масса и габариты, повышалась экономичность. Основные положения теории трансформаторов были разработаны в трудах Е. Арнольда и М. Видмара.
В развитии теории трансформаторов и совершенствовании их конструкции большое значение имели работы советских ученых В.В. Корицкого, Л.М. Пиотровского, Г.Н. Петрова, А.В. Сапожникова, А.В. Трамбицкого и др.
4.1. Трансформатор. Конструкция и принцип действия
4.1.1. Общие сведения
Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.
Рисунок 4.1 Схема распределения электроэнергии
Известно, что передача электроэнергии на дальние расстояния осуществляется на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно уменьшаются потери энергии в линии (рисунок 4.1). Получить такое высокое напряжение непосредственно в генераторе невозможно, поэтому в начале линии электропередачи устанавливают повышающие трансформаторы, а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и специальные.
Силовые трансформаторы используются в линиях электропередачи и распределения электроэнергии. К специальным трансформаторам относятся: печные, выпрямительные, сварочные, автотрансформаторы, измерительные, трансформаторы для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные, из которых наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют по две обмотки) или многообмоточными (если они имеют более двух обмоток). В зависимости от способа охлаждения трансформаторы разделяются на масляные и сухие.
