Скачиваний:
454
Добавлен:
15.06.2014
Размер:
1.66 Mб
Скачать

Рисунок

Теорема. Пусть G — связный граф; он ориентируем тогда и только тогда, когда каждое его ребро содержится по крайней мере в одном цикле.

o3.2 Орграфы и матрицы

Матрицей смежностей А(D) орграфа D называется (р×р)-матрица ||aij||, у которой aij= 1, если ViVj- дуга орграфа D, и aij=0 в противном случае. Матрица смежностей которого имеет вид (рис. 26):

Рисунок

Легко проверить, что суммы элементов по строкам матрицы A(D) равны полустепеням исхода вершин орграфа D, а суммы элементов по столбцам - полустепеням захода.

Как и в случае графов, степени матрицы смежностей А орграфа дают полную информацию о числе маршрутов, идущих из одной вершины в

110

другую. Теорема. (i, j)-й элемент аijn матрицы А" равен числу маршрутов длины n, идущих из вершины vi в вершину vj.

Упомянем здесь вкратце еще о трех матрицах, связанных с орграфом Ds - о матрице достижимостей, матрице расстояний и матрице обходов. В матрице достижимостей R элемент rij равен 1,если вершина vi достижима из vj и равен 0 в противном случае. В матрице расстояний (i, j)-й элемент равен расстоянию из вершины vi в вершину vj; если же из vi в vj нет путей, то соответствующий элемент полагаем равным бесконечности. В матрице обходов (i, j)-й элемент равен длине наиболее длинного пути из vi в vj, а если таких путей нет, то опять-таки полагаем этот элемент равным бесконечности. Для орграфа D, показанного на рис. 27.

Рисунок

Следствие. Элементы матриц достижимостей и расстояний связаны со степенями матрицы А следующими соотношениями:

1) rii = 1 и dii = 0 для всех i;

2) rij = 1 тогда и только тогда, когда aijn> 0 для некоторого n;

3) d(vi,vj) равно наименьшему из чисел n, для которых aijn> 0

Эффективных методов для нахождения элементов матрицы

обходов не существует. Эта проблема тесно связана с некоторыми другими давно поставленными алгоритмическими проблемами теории графов, такими, как нахождение остовных циклов и контуров, а также решение задачи о коммивояжере.

111

Поэлементное произведение В×С матриц B=||bij|| и C=||cij|| имеет своим (i, j)-м элементом bijcij. Матрицу достижимостей орграфа можно использовать для нахождения его сильных компонент.

o3.3 Ориентированные эйлеровы графы

Ориентированной эйлеровой цепью ориентированного графа G называется замкнутая ориентированная цепь, содержащая все дуги G.

Открытой ориентированной эйлеровой цепью называется открытая ориентированная цепь, содержащая все дуги графа G.

Ориентированный граф, обладающий ориентированной эйлеровой цепью, называется ориентированным эйлеровым графом(рис. 28).

Рисунок

Ориентированным эйлеровым графом является граф, изображенный на рис. 28, поскольку дуги е1 e2, е3, е4, е5, е6 образуют в графе G ориентированную эйлерову цепь.

Теорема. Для связного ориентированного графа G следующие утверждения равносильны:

1) G - ориентированный эйлеров граф;

2) для любой вершины v графа G справедливо равенство d - (v) = d+(v);

3) G - объединение нескольких реберно-непересекающихся

контуров.

Рассмотрим, например, ориентированный эйлеров граф G на рис.

28.Легко проверить, что он обладает свойством, сформулированным в п. 2

112

теоремы, и является также объединением реберно-непересекающихся контуров {е2, е3) и {e1, e4, e5, e6}.

Легко доказать и следующую теорему:

Теорема. Связный ориентированный граф содержит открытую ориентированную эйлерову цепь тогда и только тогда, когда выполняются условия:

1) в графе G имеются такие две вершины v1 и v2, что d+ (v1)=d- (v1)+1 и d- (v2) = d+(v2)+1;

2) для любой вершины v, отличной от v1 и v2, справедливо равенство d- (v) - d+ (v).

Например, условиям этой теоремы удовлетворяет граф на рис. 29. Открытой ориентированной эйлеровой цепью графа G является последовательность e1, е2, e3, e4, е5, е6.

Рисунок

Эйлеров контур в орграфе D — это замкнутый остовный маршрут, в котором каждая дуга орграфа D встречается по одному разу. Орграф называется эйлеровым, если в нем есть эйлеров контур.

Для орграфа, показанного на рис. 30; в этом орграфе 14 эйлеровых контуров. Два из них такие: v1, v2, v3, v4, v2, v1, v3, v1, v4, v1 и v1, v2, v1, v4, v2, v3, v4, v1, v3, v1.

113