
- •Общие сведения
- •Сведения об ЭУМК
- •Методические рекомендации по изучению дисциплины
- •Рабочая учебная программа
- •Теоретический раздел
- •Лекции
- •Раздел 1. Теория множеств
- •Глава 1. Множества и подмножества
- •1.1 Элементы и множества
- •1.2 Способы задания множеств
- •Глава 2. Операции над множествами
- •2.1 Сравнение множеств
- •2.2 Операции над множествами
- •2.3 Свойства операций над множествами
- •2.4 Примеры доказательств тождеств с множествами
- •2.5 Булеан
- •Глава 3. Упорядоченные множества
- •3.1 Кортеж
- •3.2 Операция проекции
- •3.3 Декартово произведение множеств
- •3.4 Графики
- •Глава 4. Отношения на множествах
- •4.1 Понятие отношения
- •4.2 Свойства отношений
- •4.3 Операции над отношениями
- •4.4 Отношение эквивалентности
- •4.5 Отношение порядка
- •Глава 5. Соответствия и функции
- •5.1 Основные понятия соответствия
- •5.2 Операции над соответствиями
- •5.3 Свойства соответствий
- •5.4 Отображения множеств
- •5.5 Функция
- •Глава 6. Мультимножества
- •6.1 Понятие мультимножества
- •6.2 Операции над мультимножествами
- •Раздел 2. Теория графов
- •Глава 1. Основные понятия
- •1.1 Определения и примеры
- •1.2 Способы задания графов
- •Глава 2. Графы
- •2.1 Типы графов
- •2.2 Подграфы
- •2.3 Сильно связные графы и компоненты графа
- •2.4 Маршруты, цепи, пути и циклы
- •2.5 Связность и компоненты графа
- •2.6 Операции над графами
- •2.7 Матрица смежности и инцидентности
- •Глава 3. Орграфы
- •3.1 Определения и примеры
- •3.2 Орграфы и матрицы
- •3.3 Ориентированные эйлеровы графы
- •Глава 4. Ориентированные ациклические графы и деревья
- •4.1 Ориентированные ациклические графы
- •4.2 Деревья
- •Глава 5. Планарность и двойственность
- •5.1 Планарные графы
- •5.2 Точки сочленения, мосты и блоки
- •5.3 Двойственные графы
- •Глава 6. Поиск на графах
- •6.1 Исследование лабиринта
- •6.2 Поиск в глубину
- •6.3 Поиск в ширину
- •6.4 Нахождение кратчайшего пути (Алгоритм Дейкстры)
- •Практический раздел
- •Указания по выбору варианта
- •Теоретическая часть (вопросы)
- •Практическая часть
- •Контрольное задание №1.
- •Контрольное задание №2.
- •Контрольное задание №3.
- •Контрольное задание №4.
- •Контрольное задание №5.
- •Контрольное задание №6.
- •Теоретическая часть (вопросы)
- •Контрольное задание №1.
- •Контрольное задание №2.
- •Контрольное задание №3.

∙
∙
∙Рисунок
o2.7 Матрица смежности и инцидентности
∙Пусть G = (V, Е) — ориентированный граф без параллельных дуг,
вкотором V={v1,v2,...,vn}. Матрицей смежности M=[mij] графа G называется матрица порядка n×n, элементы которой mij определяются следующим образом:
∙
∙ Например, граф, изображенный на рис. 19, имеет следующую матрицу смежности:
103

∙
∙Рисунок
∙
∙M =
∙В случае неориентированного графа mij=1 тогда и только тогда, когда существует ребро, соединяющее вершины vi и vj. Перейдем к изучению результатов, связанных с матрицей смежности.
∙Матрица инциденций. Рассмотрим граф G без петель на n вершинах и m ребрах. Матрица инциденций Аc = [aij] графа G имеет n строк (по одной на каждую вершину) и m столбцов (по одному на каждую дугу). Элемент aij матрицы Aс определяется следующим образом:
∙
104

∙ Если граф G ориентированный aij=
∙
∙ Если граф G ориентированный aij=
∙
∙ Строки матрицы Ас называют векторами инциденций графа G. На рис. 20, а и б представлены два графа со своими матрицами инциденций.
∙
∙
∙
105