- •Химический состав клетки
- •2. Неорганические соединения в организме человека.
- •3. Органические соединения в организме человека.
- •4. Физико-химические свойства воды как основной среды в организме человека.
- •5. Белки. Функции белков в организме человека.
- •6. Липиды. Функции липидов в организме человека.
- •7. Углеводы. Функции углеводов в организме человека.
- •Нуклеиновые кислоты — биополимеры, мономерами которых являются нуклеотиды.
- •9. Ферменты. Функции ферментов в организме человека.
- •10. Витамины. Водорастворимые витамины: функции, проявления гипо- и гипервитаминоза в организме человека.
- •11. Витамины. Жирорастворимые витамины: функции, проявления гипо- и гипервитаминоза в организме человека.
- •12. Физико-химическая регуляция функций в организме человека.
- •13. Обмен веществ и энергии в организме человека.
- •14. Свободнорадикальные процессы в организме человека и животных.
- •16. Система гормональной регуляции физиологических функций. Гормоны гипоталамуса, гипофиза, щитовидной и паращитовидных желез. Гормоны гипоталамуса
- •Гормоны аденогипофиза
- •17. Система гуморальной регуляции физиологических функций. Гормоны надпочеч..
- •18. Биохимические основы иммунологического ответа.
- •19. Ксенобиотики. Общие сведения, классификация. Биотранс…
- •20. Биохимические аспекты питания.
- •21. Физические основы рецепции. Ионные каналы.
- •22. Потенциалы мембраны. Классификация
- •23. Возбудимость как свойство живого. Фазы возбудимости
- •24. Законы проведения волны возбуждения по нервным волокнам
- •25. Электрогенез в биологических системах.
- •26 .Действие физических факторов на биосистемы. Ультразвук.
- •27. Действие физических факторов на биосистемы. Звуковые волны.
- •28. Действие физических факторов на биосистемы. Радиация.
- •29. Физиологический электрон. Катодическая депрессия по Вериго.
- •30. Классификация нервных волокон. Закономерности проведения возбуждения….
- •31. Раздражимость как свойство живой системы. Законы раздражения.
- •32. Рецепторы биологических мембран. Типы рецепторов.
- •33. Связывание вещества с рецептором. Понятие об аффинитете.
- •34. Равновесный потенциал. Уравнение Нернста.
- •35. Ионные каналы. Воротный механизм работы ионных каналов.
- •36. Мембранный потенциал действия. Критический уровень деполяризации.
- •37. Мембранный потенциал покоя. Гиперполяризация мембраны.
- •38. Критический уровень деполяризации. Локальный ответ и его свойства.
- •39. Синаптическая передача возбуждения между клетками. Химич-е и элек-е синапсы.
- •40. Синаптическая передача возбуждения. Этапы и механизмы.
35. Ионные каналы. Воротный механизм работы ионных каналов.
Ио́нные кана́лы — порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану. Такие комплексы представляют собой набор идентичных или гомологичных белков, плотно упакованных в липидном бислое мембраны вокруг водной поры. Каналы расположены в плазмалемме и некоторых внутренних мембранах клетки. Через ионные каналы проходят ионы Na+ (натрия), K+ (калия), Cl− (хлора) и Ca++ (кальция). Из-за открывания и закрывания ионных каналов меняется концентрация ионов по разные стороны мембраны и происходит сдвиг мембранного потенциала. Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются молекулярные системы открытия, закрытия, избирательности, инактивации, рецепции и регуляции. Ионные каналы могут иметь несколько участков (сайтов) для связывания с управляющими веществами.
Механизм, который обеспечивает открывание и закрывание ионных каналов, получил название ворот канала.
У канала есть ворота, которые закрыты в состоянии покоя и открываются при воздействии сигнала. У некоторых каналов выделяют два вида ворот: активационные (m-ворота) и инактивационные (h-ворота). Выделяют три состояния ионных каналов: состояние покоя, когда ворота закрыты и канал недоступен для ионов; состояние активации, когда воротная система открыта и ионы перемещается через мембрану по каналу; состояние инактивации, когда канал закрыт и не отвечает на стимулы.
Скорость проведения (проводимость). Бывают быстрые и медленные каналы. Каналы “утечки” - медленные, натриевые каналы в нейронах - быстрые. В мембране любой клетки имеется большой набор разнообразных (по скорости) ионных каналов, от активации которых зависит функциональное состояние клеток.
36. Мембранный потенциал действия. Критический уровень деполяризации.
Если на нерв или мышцу нанести раздражение выше порога возбуждения, то МПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной. Это кратковременное изменение МПП, происходящее при возбуждении клетки, которое на экране осциллографа имеет форму одиночного пика, называется мембранным потенциалом действия (МПД). МПД в нервной и мышечной тканях возникает при снижении абсолютной величины МПП (деполяризации мембраны) до некоторого критического значения, называемого порогом генерации МПД. В гигантских нервных волокнах кальмара МПД равен — 60 мВ. При деполяризации мембраны до -45 мВ (порог генерации МПД) возникает МПД.
По своей амплитуде (100-120 мВ) МПД (Мембранный потенциал действия) на 20-50 мВ превышает величину МПП (Мембранный потенциал покоя). Другими словами, внутренняя сторона мембраны на короткое время становится заряженной положительно по отношению к наружной, — «овершут» или реверсия заряда.
Деполяризация мембраны, вызываемая раздражающим стимулом, например, электрическим током, открывает m-ворота натриевых каналов (переход из состояния А в Б) и обеспечивает появление направленного внутрь потока положительных зарядов — ионов натрия. Это ведет к дальнейшей деполяризации мембраны, что, в свою очередь, увеличивает число открытых натриевых каналов и, следовательно, повышает натриевую проницаемость мембраны. Возникает «регенеративная» деполяризация мембраны, в результате которой потенциал внутренней стороны мембраны стремится достичь величины натриевого равновесного потенциала.
Критический уровень деполяризации — величина мембранного потенциала, при достижении которой возникает потенциал действия. Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия.
