- •3. Основы физики цепной ядерной реакции. Радиоактивный распад и его характеристики.
- •Составное ядро[править | править вики-текст]
- •Энергия возбуждения[править | править вики-текст]
- •Каналы реакций[править | править вики-текст]
- •Прямые ядерные реакции[править | править вики-текст]
- •Сечение ядерной реакции[править | править вики-текст]
- •Выход реакции[править | править вики-текст]
- •Законы сохранения в ядерных реакциях[править | править вики-текст]
- •Ядерная реакция деления[править | править вики-текст]
- •Ядерная реакция синтеза[править | править вики-текст]
- •Термоядерная реакция[править | править вики-текст]
- •Фотоядерная реакция[править | править вики-текст]
- •Другие[править | править вики-текст]
- •Запись ядерных реакций[править | править вики-текст]
- •Виды частиц, испускаемых при радиоактивном распаде[править | править вики-текст]
- •Альфа-распад[править | править вики-текст]
- •Бета-распад[править | править вики-текст]
- •Бета-минус-распад[править | править вики-текст]
- •Позитронный распад и электронный захват[править | править вики-текст]
- •Двойной бета-распад[править | править вики-текст]
- •Общие свойства бета-распада[править | править вики-текст]
- •Гамма-распад (изомерный переход)[править | править вики-текст]
- •4. Ионизирующее излучение, определения, виды. Фотонное и корпускулярное излучение.
- •5. 5.Основные характеристики разных видов ионизирующего излучения.
- •6. Взаимодействие ядерного излучения с веществом
- •7.Биологические эффекты радиационного воздействия.
- •Единицы измерения[править | править вики-текст]
- •Классификация[править | править вики-текст]
- •I. Эффект естественного радиационного фона.
- •II. Эффект малых доз.
- •III. Эффект больших доз
- •Эффект естественного радиационного фона[править | править вики-текст]
- •Синдром дефицита облучения[править | править вики-текст]
- •Эффект малых доз (радиационный гормезис)[править | править вики-текст]
- •Лучевая болезнь[править | править вики-текст]
- •Классификация[править | править вики-текст]
- •Клинико-морфологическая классификация[править | править вики-текст]
- •Формы лучевой болезни в зависимости от особенностей облучения[править | править вики-текст]
- •Патологическая анатомия лучевой болезни[править | править вики-текст] Костномозговая форма[править | править вики-текст]
- •1. Период первичной реакции на облучение
- •2. Период мнимого благополучия
- •3. Период разгара заболевания
- •4. Восстановительный период
- •Кишечная и церебральная формы[править | править вики-текст]
- •Острая лучевая болезнь при внешнем общем неравномерном облучении[править | править вики-текст]
- •Сочетанные лучевые поражения[править | править вики-текст]
- •Комбинированные лучевые поражения[править | править вики-текст]
- •Нейтронные поражения[править | править вики-текст]
- •Хроническая лучевая болезнь вследствие равномерного внешнего облучения[править | править вики-текст]
- •Причины смерти при острой лучевой болезни[править | править вики-текст]
- •8.Внешнее и внутренне облучение.
- •9.Основные дозовые характеристики излучений. Экспозиционная поглощенная, эквивалентная, эффективная эквивалентная, коллективная дозы, керма.
- •Экспозиционная доза[править | править вики-текст]
- •Поглощённая доза[править | править вики-текст]
- •Эквивалентная доза (биологическая доза)[править | править вики-текст]
- •Эффективная доза[править | править вики-текст]
- •Групповые дозы[править | править вики-текст]
- •Мощность дозы[править | править вики-текст]
- •10. .Единицы измерения радиоактивности и поглощенной дозы (си и внесистемные). Единицы измерения радиоактивности и доз облучений
- •11.Дозовые нормативы для различных групп населения
- •12.Принципы определения радиоактивности и дозовых нагрузок
Фотоядерная реакция[править | править вики-текст]
Основная статья: Фотоядерная реакция
При
поглощении гамма-кванта ядро получает
избыток энергии без изменения своего
нуклонного состава, а ядро с избытком
энергии является составным
ядром.
Как и другие ядерные реакции, поглощение
ядром гамма-кванта возможно только при
выполнении необходимых энергетических
и спиновых соотношений.
Если переданная ядру энергия
превосходит энергию
связи нуклона
в ядре, то распад образовавшегося
составного ядра происходит чаще всего
с испусканием нуклонов, в основном,нейтронов.
Такой распад ведёт к ядерным реакциям
и
,
которые и называются фотоядерными,
а явление испускания нуклонов в этих
реакциях —ядерным
фотоэффектом.
Другие[править | править вики-текст]
-
Этот раздел не завершён.
Вы поможете проекту, исправив и дополнив его.
Запись ядерных реакций[править | править вики-текст]
Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.
Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.
Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:
.
Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.
Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:
.
Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.
Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы
,
где
—
ядро атома водорода, протон.
В «химической» записи эта реакция выглядит как
.
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава (заряда Z, массового числаA) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра. Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия, рубидия или кальция, одни природные изотопы стабильны, другие же радиоактивны).
Естественная радиоактивность — самопроизвольный распад атомных ядер, встречающихся в природе.
Искусственная радиоактивность — самопроизвольный распад атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.
Ядро, испытывающее радиоактивный распад, и ядро, возникающее в результате этого распада, называют соответственно материнским и дочерним ядрами. Изменение массового числа и заряда дочернего ядра по отношению к материнскому описывается правилом смещения Содди.
Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада, когда в результате первого этапа распада возникает дочернее ядро в возбуждённом состоянии, затем испытывающее переход в основное состояние с испусканием гамма-квантов.
Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.
В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с испусканием нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или β+-распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.
Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208(посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).
Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро. Последовательность таких распадов называется цепочкой распадов, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся сурана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.
Ядра с одинаковым массовым числом A (изобары) могут переходить друг в друга посредством бета-распада. В каждой изобарной цепочке содержится от 1 до 3 бета-стабильных нуклидов (они не могут испытывать бета-распад, однако не обязательно стабильны по отношению к другим видам радиоактивного распада). Остальные ядра изобарной цепочки бета-нестабильны; путём последовательных бета-минус- или бета-плюс-распадов они превращаются в ближайший бета-стабильный нуклид. Ядра, находящиеся в изобарной цепочке между двумя бета-стабильными нуклидами, могут испытывать и β−-, и β+-распад (или электронный захват). Например, существующий в природе радионуклид калий-40 способен распадаться в соседние бета-стабильные ядра аргон-40 и кальций-40:
