Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тунеголовец В.П. - Лекции по навигационной гидр...doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
3.88 Mб
Скачать

Теплая устойчивая воздушная масса

Условия подстилающей поверхности. Теплая устойчивая воздушная масса над материками наблюдается, как правило, в холодную половину года. Обычно это воздушная масса, перемещающаяся с теплого океана на холодный материк. Над океанами и морями теплая устойчивая воздушная масса отмечается в основном в теплую половину года, когда теплый воздух с материка смещается на холодную водную поверхность.

Синоптические условия. Теплая устойчивая воздушная масса поступает в данный район в теплых секторах циклонов и примыкающих к ним северных окраин антициклонов.

Типичная погода. Сплошная слоистая или слоисто-кучевая облачность, иногда с выпадением моросящих осадков или с образованием адвективных туманов. Суточный ход метеорологических элементов выражен слабо. Возможно возникновение адвективной инверсии температуры, в особенности при движении воздушной массы над охлажденной поверхностью с большой теплоемкостью (снежный покров, поверхность моря). Турбулентное перемешивание может “поднять” инверсию к верхней границе турбулентного слоя. В отдельных случаях вертикальная мощность слоистых облаков возрастает настолько, что они достигают своей верхней границей уровня кристаллизации, превращаются в слоисто-дождевые и начинают давать обложные осадки.

 

Холодная устойчивая воздушная масса

Условия подстилающей поверхности. Холодная устойчивая воздушная масса наблюдается над материками, в основном, зимой. Над океанами и морями – как правило, не отмечается.

Синоптические условия. Антициклонические системы в целом, особенно – центральные части антициклонов.

Типичная погода. Основной тип – морозная безоблачная погода, иногда с радиационными туманами. Дополнительный тип – значительная и сплошная слоистая и слоисто-кучевая облачность, иногда слабые снегопады.

 

Теплая неустойчивая воздушная масса

Условия подстилающей поверхности. Теплая неустойчивая воздушная масса над материками наблюдается летом, вблизи побережий морей может наблюдаться и зимой. Над океанами и морями теплая неустойчивая воздушная масса наблюдается в холодную половину года.

Синоптические условия. Условия, при которых воздушная масса может быть неустойчивой достаточно разнообразны. Теплая воздушная масса может быть неустойчивой в теплых секторах циклонов и на западной периферии антициклонов. Как правило, неустойчива относительно теплая воздушная масса во вторичных теплых секторах циклонов.

Типичная погода. Кучевая, иногда кучево-дождевая облачность с ливневыми осадками, часто с грозами, в том числе, ночными, радиационными туманами (преимущественно после выпадения дождя и ночного прояснения).

 

Холодная неустойчивая воздушная масса

Условия подстилающей поверхности. Холодная неустойчивая воздушная масса над материками наблюдается летом, над океанами и морями – преимущественно в холодное полугодие.

Синоптические условия. Холодная неустойчивая воздушная масса наблюдается в тыловых частях циклонов за холодными фронтами и частично примыкающими к ним окраинами антициклонов.

Типичная погода. Кучевая, кучево-дождевая облачность, ливневые осадки, часто многократно повторяющиеся, иногда днем грозы, ночью над материками наблюдаются радиационные туманы. Суточный ход метеорологических элементов особенно велик. Холодная неустойчивая воздушная масса особенно характерно проявляется ранней весной – “апрельская погода”, когда в северной зоне умеренных широт еще лежит снег, а в южной зоне почва уже заметно прогрелась.

Нейтральные (местные) воздушные массы в любой сезон могут быть как устойчивыми, так и неустойчивыми в зависимости от начальных свойств и направления трансформации той воздушной массы, из которой образовалась данная воздушная масса. Над материками нейтральные воздушные массы летом, как правило, неустойчивы, зимой – устойчивы. Над океанами и морями такие массы летом чаще устойчивы, зимой неустойчивы.

Неравномерная адвекция температуры на различных высотах приводит к возрастанию устойчивости, если с высотой адвекция тепла усиливается или адвекция холода уменьшается. При уменьшении адвекции тепла с высотой или возрастании адвекции холода происходит повышение неустойчивости воздушной массы. Наибольший эффект имеет место, когда знак адвекции в нижнем слое противоположен знаку адвекции в верхнем слое. Радиационное охлаждение верхнего слоя воздушной массы способствует возрастанию неустойчивости, а нагревание – возрастанию устойчивости.

К оглавлению.

 

 

Атмосферные фронты. Классификация фронтов

Неравномерное нагревание земной поверхности и нижних слоев атмосферы является причиной возникновения горизонтальных градиентов температуры. Особенно большие горизонтальные градиенты температуры воздуха создаются между высокими и низкими широтами. Вследствие горизонтального переноса теплые и холодные воздушные массы могут сближаться друг с другом или, наоборот, удаляться друг от друга.

При сближении воздушных масс, имеющих различные характеристики, в зоне их сближения увеличиваются горизонтальные градиенты температуры воздуха, влажности, давления, возрастает скорость ветра. Наоборот, при удалении воздушных масс друг от друга градиенты метеорологических величин и скорости ветра уменьшаются. Зоны в тропосфере, в которых происходит сближение воздушных масс с различными характеристиками называются переходными зонами или фронтальными поверхностями.

Понятие фронтов и фронтальных поверхностей было введено в метеорологическую литература и практику в 1918 г. Я. Бьеркнесом (Бергенская школа в Норвегии), который показал, что распределение метеорологических элементов во внетропических циклонах скорее прерывное, чем непрерывное. Бьеркнес нашел, что поверхность разрыва имеет небольшой наклон, причем, холодный (более плотный) воздух образует клин под теплым (менее плотным) воздухом.

В дальнейших исследованиях понятие фронтов было расширено – подчеркивалась их роль как существенных звеньев в общей циркуляции атмосферы высоких и средних широт.

На существование фронтальных зон и их роль в образовании атмосферных вихрей указывал еще в середине прошлого века адмирал Фицрой (1863 г.). Он предполагал, что развитие атмосферных процессов происходит бурно и сопровождается образованием вихрей в тех районах, где встречаются холодные массы воздуха, идущие с севера, и теплые массы воздуха, идущие с юга. Подобная мысль была еще раньше (1837 г.) высказана Дове. Однако, эти предположения не были восприняты с должным вниманием.

Фактически в 1878-1879 гг. ученые Ли и Кеппен выявили характерные признаки того важного явления, которое мы теперь называем холодным фронтом. Но частью последовательной научной системы это понятие стало лишь с 1918 г., когда оно вновь было открыто Бергенской школой.

Теплый фронт долгое время ускользал от внимания метеорологов. И только после 60-ти лет составления синоптических карт в 1918 г. теплый фронт был открыт Бергенской школой и изучена его структура.

Итак, “фронтальная поверхность” – это наклонная поверхность или зону перехода, разделяющую воздушные массы с различными свойствами, в том числе, с различной плотностью.

Проекция фронтальной поверхности на приземную синоптическую карту называется атмосферным фронтом, на карты барической топографии –высотной фронтальной зоной.

Атмосферными фронтами, или просто фронтами, называются переходные зоны между двумя различными воздушными массами. Переходная зона начинается от поверхности Земли и простирается вверх до той высоты, где различия между воздушными массами стираются. Обычно в зависимости от времени года и широты места они прослеживаются до высоты 9—12 км.

Ширина переходной зоны у поверхности Земли не превышает 100 км.

В переходной зоне — зоне соприкосновения воздушных масс — наблюдаются резкие изменения значений метеорологических элементов (температуры, влажности). Здесь наблюдается значительная облачность, выпадает больше всего осадков, происходят наиболее интенсивные изменения давления, силы и направления ветра.

В зависимости от направления перемещения теплых и холодных масс воздуха, расположенных по обе стороны от переходной зоны, фронты делят на теплы и холодные. Фронты, которые мало изменяют свое положение, называют малоподвижными. Особое положение занимают фронты окклюзии, образовавшиеся при смыкании теплого и холодного фронтов. Фронты окклюзии могут быть по типу как холодного, так и теплого фронтов. На картах погоды фронты проводятся либо цветными линиями, либо в виде условных обозначений (см. стр. 8). Подробно о каждом из этих видов фронтов будет сказано ниже.

 

Теплый фронт

Если фронт движется так, что холодный воздух отступает, уступая месту теплому воздуху, то такой фронт называется теплым. Теплый воздух, продвигаясь 'вперед, не только занимает пространство, где раньше находился холодный воздух, но и 'поднимается вверх 'вдоль переходной зоны. По мере подъема теплый воздух охлаждается, водяной пар, находящийся в нем, конденсируется. В результате этого образуются облака (рис. 11).

Рис. 2.1.3. Теплый фронт на вертикальном разрезе и на карте погоди.

На рис 2.1.3 показаны наиболее характерная облачность, осадки и воздушные течения теплого фронта. Первым признаком приближения теплого фронта будет появление перистых облаков (Ci). Давление при этом начнет падать. Через несколько часов перистые облака, уплотняясь, переходят в пелену перисто-слоистых облаков (Cs). Вслед за перисто-слоистыми облаками натекают еще более плотные высоко-слоистые облака (As), постепенно становящиеся не просвечиваемыми луной или солнцем. Давление падает при этом сильнее, а ветер, несколько поворачивая влево, усиливается. Из высоко-слоистых облаков могут выпадать осадки, особенно зимой, когда они по пути не успевают испариться.

Через некоторое время эти облака переходят в слоисто-дождевые (Ns), под которыми обычно бывают разорванно-дождевые (Fr nb) и разорванно-слоистые (St fr). Осадки из слоисто-дождевых облаков выпадают более интенсивно, видимость ухудшается, давление быстро падает, 'ветер усиливается, часто принимает порывистый характер. При пересечении фронта ветер резко поворачивает вправо, падение давления прекращается или замедляется. Осадки могут прекратиться, но обычно они лишь ослабевают и переходят 'в моросящие. Температура и влажность воздуха постепенно повышаются.

Трудности, которые могут встретиться при пересечении теплого фронта, связаны в основном с длительным пребыванием в зоне плохой видимости, ширина которой колеблется от 150 до 200 миль. Необходимо знать, что условия плавания в умеренных и северных широтах при пересечении теплого фронта в холодную половину года ухудшаются вследствие расширения зоны плохой видимости и возможного обледенения.

 

Холодный фронт

Холодным фронтом называется фронт, перемещающийся в сторону теплой воздушной массы. Различают два основных типа холодных фронтов:

Рис. 2.1.4. Холодный фронт первого рода на вертикальном разрезе, и на карте погоды.

1) холодные фронты первого рода—медленно движущиеся или замедляющиеся фронты, которые чаще всего наблюдаются на периферии циклонов или антициклонов;

2) холодные фронты второго рода — быстро движущиеся или перемещающиеся с ускорением, они возникают во внутренних частях циклонов и ложбин, перемещающихся с большой скоростью.

Холодный фронт первого рода. К холодному фронту первого рода, как было оказано выше, относится медленно движущийся фронт. В этом случае теплый воздух медленно восходит вверх по вторгающемуся под него клину холодного воздуха (рис. 2.1.4).

Вследствие этого над зоной раздела образуются сначала слоисто-дождевые облака (Ns), переходящие на некотором расстоянии от линии фронта в высоко-слоистые (As) и перисто-слоистые (Cs) облака. Осадки начинают выпадать у самой линии фронта и продолжаются после его прохождения. Ширина зоны зафронтальных осадков составляет 60—110 миль. В теплое время года в передней части такого фронта создаются благоприятные условия для образования мощных кучево-дождевых облаков (Сb), из которых выпадают ливневые осадки, сопровождаемые грозами.

Рис. 2.1.5. Холодный фронт второго рода на вертикальном разрезе и на карте погоды.

Давление перед самым фронтом сильно падает и на барограмме образуется характерный “грозовой нос”— острый пик, обращенный книзу. Ветер перед самым прохождением фронта поворачивает к нему, т. е. делает поворот влево. После прохождения фронта давление начинает расти, ветер круто поворачивает вправо. Если фронт располагается в хорошо выраженной ложбине, поворот ветра иногда достигает 180°, например, южный ветер может смениться северным. С прохождением фронта наступает похолодание.

На условия плавания при пересечении холодного фронта первого рода будет влиять ухудшение видимости в зоне осадков и шквалистый ветер.

Холодный фронт второго рода. Это быстро движущийся фронт. Быстрое движение холодного воздуха приводит к очень интенсивному вытеснению предфронтального. теплого воздуха и, как следствие этого, к мощному развитию кучевых облаков (Сu) (рис. 2.1.5).

Кучево-дождевые облака на больших высотах обычно вытягиваются вперед на 60—170 миль от линии фронта. Эта передняя часть облачной системы наблюдается в виде перисто-слоистых (Cs) и перисто-кучевых (Сс), а также чечевицеобразных высоко-кучевых облаков (Ас). Давление перед приближающимся фронтом падает, но слабо, ветер поворачивает влево. Выпадает ливневый дождь. После прохождения фронта давление быстро повышается, ветер резко поворачивает вправо и значительно усиливается, принимает характер штормового. Температура воздуха понижается иногда на 10° за 1—2 часа.

Условия плавания при пересечении такого фронта неблагоприятные, так как у самой линии фронта мощные восходящие токи воздуха способствуют образованию вихря с разрушительными скоростями ветра. Ширина такой зоны может достигать 30 миль.

Малоподвижные, или стационарные, фронты

Фронт, который не испытывает заметного смещения ни в сторону теплой, ни в сторону холодной воздушной массы, называется стационарным. Стационарные фронты располагаются обычно в седловине, либо в глубокой ложбине или на периферии антициклона. Облачная система стационарного фронта представляет собой систему перисто-слоистых, высоко-слоистых и слоисто-дождевых облаков, которая выглядит примерно так, как у теплого фронта. Летом на фронте часто образуются кучево-дождевые облака.

Рис. 2.1.6. Малоподвижный фронт на карте погоды

 

 

Рис. 2.1.7. Волновые возмущения на малоподвижном фронте.

 

Направление ветра на таком фронте почти не изменяется. Сила ветра на стороне холодного воздуха меньше (рис. 2.1.6). Давление значительных изменений не испытывает. В узкой полосе (30 миль) выпадает обложной дождь.

На стационарном фронте могут образовываться волновые возмущения (рис. 2.1.7). Волны быстро перемещаются вдоль стационарного фронта таким образом, что холодный воздух остается слева, т. е. в направлении изобар в теплой воздушной массе. Скорость перемещения достигает 30 и более узлов.

После прохождения волны фронт восстанавливает свое положение. Усиление волнового возмущения до образования циклона наблюдается, как правило, в том случае, если с тыла подтекает холодный воздух (рис. 2.1.8).

Весной и осенью, а особенно летом прохождение волн на стационарном фронте обусловливает развитие интенсивной грозовой деятельности, сопровождаемой шквалами.

Условия плавания при пересечении стационарного фронта осложняются вследствие ухудшения видимости, а в летний период — вследствие усиления ветра до штормового.

Рис.2.1.8. Образование циклона на малоподвижном фронте.

Фронты окклюзий

Фронты окклюзий образуются в результате смыкания холодного я теплого фронтов и вытеснения теплого воздуха вверх.

Процесс смыкания происходит в циклонах, где холодный фронт, перемещаясь с большой скоростью, настигает теплый.

В образовании фронта окклюзии участвуют три воздушные массы — две холодные и одна теплая. Если холодная воздушная масса за холодным фронтом теплее, чем холодная масса перед фронтом, то она, вытесняя теплый 'воздух вверх, одновременно сама будет натекать на переднюю, более холодную массу. Такой фронт называется теплой окклюзией (рис. 2.1.9).

Рис. 2.1.9. Фронт теплой окклюзии на вертикальном разрезе и на карте погоды.

 

Если же воздушная масса за холодным фронтом холоднее воздушной массы 'перед теплым фронтом, то эта тыловая масса будет подтекать как под теплую, так и под переднюю холодную воздушную массу. Такой фронт называется холодной окклюзией (рис. 2.1.10).

Фронты окклюзий в своем развитии проходят ряд стадий. Наиболее сложные условия погоды на фронтах окклюзий наблюдаются в начальный момент смыкания теплого и холодного фронтов. В этот период облачная система, как видно на рис. 18, представляет собой сочетание облаков теплого и холодного фронтов. Осадки обложного характера начинают выпадать из слоисто-дождевых и кучево-дождевых облаков, в зоне фронта они переходят в ливневые.

Ветер перед теплым фронтом окклюзии усиливается, после прохождения ослабевает и поворачивает вправо.

Перед холодным фронтом окклюзии ветер усиливается до штормового, после прохождения ослабевает и резко поворачивает вправо. По мере вытеснения теплого воздуха в более высокие слои, фронт окклюзии постепенно размывается, вертикальная мощность облачной системы уменьшается, появляются безоблачные прослойки. Слоисто-дождевая облачность постепенно переходит в слоистую, высокослоистая — в высококучевую и перисто-слоистая — в перисто-кучевую. Осадки прекращаются. Прохождение старых фронтов окклюзии проявляется в натекании высоко-кучевой облачности 7—10 баллов.

Условия плавания через фронты окклюзии в начальной стадии развития почти не отличаются от условий плавания 'при пересечении теплого или холодного фронтов соответственно.

Рис. 2.1.10. Фронт холодной окклюзии на вертикальном разрезе и на карте погоды.

 

Непрерывность давления накладывает определенные условия на пространственную ориентацию фронтальной поверхности. Очевидно, что она не может быть вертикальной, поскольку из-за различия температур воздушных масс давление с высотой у них убывает по-разному. В теплой массе барическая ступень больше – давление убывает медленнее, в холодной – барическая ступень меньше, и давление убывает быстрее. Следовательно, давление не может оставаться одинаковым с обеих сторон фронтальной поверхности. При отсутствии движения любой разрыв в поле плотностей (или зона быстрого перехода) должен быть горизонтальным. При наличии движения разрыв может стать наклонным, при этом более плотный воздух (холодный) образует клин под менее плотным (теплым).

В гидродинамике доказывается, что если поверхность разрыва все время разделяет одни и те же воздушные массы воздуха, то для нее выполняется следующее динамическое условие: значения давления по обе стороны поверхности разрыва одинаковы, следовательно, в любой точке фронтальной поверхности P1=P2=0, или , т.е. давление не испытывает скачка на поверхности разрыва. В случае разрыва на бесконечно малом участке создались бы бесконечно большие градиенты давления и, соответственно, огромные скорости ветра, при которых устойчивая поверхность существовать не может. Следовательно, скачок плотности на фронтальной поверхности обусловлен только скачком температуры и влажности.

Для поверхности разрыва, состоящей все время из одних и тех же частиц, должно выполняться кинематическое условие: нормальные к поверхности слагающие скорости в обеих массах должны быть равны. Это условие связано с условием непрерывности: на фронтальной поверхности не должно возникать пустоты и не должно появляться новой массы.

Для этого в одной массе скорость должна иметь слагающую, направленную к фронтальной поверхности, а в другой – равную по величине слагающую, направленную от фронтальной поверхности.

Наблюдения показывают, что наклон фронтальной поверхности колеблется около средней величины 1:150 – от 1:50 до 1:300. Фронт с наклоном 1:50 считается крутым, с наклоном 1:300 – пологий.

Горизонтальная и вертикальная протяженность фронтальных поверхностей имеет тот же порядок, что и протяженность воздушных масс, которые они разделяют. Наибольшая протяженность фронтальных поверхностей по высоте в средних широтах _– 8-12 км. Нередко они достигают тропопаузы. Протяженность фронтальных поверхностей по горизонтали – тысячи километров.

Толщина фронтальной поверхности по вертикали очень мала – несколько сотен метров, это гораздо менее, чем ширина воздушных масс, которые она разделяет.

Ширина зоны фронта на картах погоды составляет несколько десятков километров, но при анализе синоптических карт фронт проводят в виде одной линии. Лишь на вертикальных разрезах атмосферы крупного масштаба удается выявить верхнюю и нижнюю границы переходного слоя.

В поле температуры и ветра фронты наиболее резко выражены у поверхности Земли в системе развивающихся циклонов и барических ложбин. Этому способствует сходимость воздушных течений у поверхности Земли, вследствие которой в зоне фронта встречаются массы воздуха с различными характеристиками, в том числе, с различной температурой. В системе антициклонов и гребней фронты в приземном слое размываются. Это происходит при расходящихся воздушных течениях (дивергенции).

По географическим признакам в связи с географической классификацией воздушных масс различают следующие фронты.

Арктический фронт (АФ) – фронт между арктическими и полярными (умеренными) воздушными массами северного полушария Располагается на южной границе арктической воздушной массы. Обычно различают несколько одновременно существующих ветвей АФ, иногда АФ огибает непрерывно все северное полушарие.

Полярный фронт или фронт умеренных широт – является южной границей умеренной воздушной массы, разделяющий воздушные массы умеренных широт и тропический воздух.

Пассатный фронт – фронт в тропиках, разделяющий две массы тропического воздуха с различными свойствами - старый ТВ и более свежий ТВ, который недавно образовался путем трансформации массы полярного воздуха. Пассатный фронт обычно проходит в пассатной ложбине между двумя субтропическими антициклонами, являясь продолжением в тропиках полярного фронта. Осадки в пассатной зоне выпадают главным образом, в связи с пассатными фронтами. Пассаты двух полушарий сходятся во внутритропической зоне конвергенции.

Внутритропическая зона конвергенции (ВЗК) – синоним тропического фронта – достаточно узкая и резкая зона сходимости между северным и южным пассатами во внутритропической зоне конвергенции. Ранее употреблялся термин “тропический фронт”, согласно понятия, введенного норвежской Бергенской школой. Но воздушные массы, южного и северного пассата не отличаются существенно по своим свойствам, поэтому в настоящее время употребляется термин “ВЗК”. Действительно, вблизи экватора тропический фронт является только зоной сходимости линий тока в поле ветра, обычно, в слое трения, но при удалении от экватора он может быть фронтальной поверхностью.

ВЗК – переходная зона между пассатами северного и южного полушарий или между пассатом и муссоном, или между пассатом и экваториальными западными ветрами. Характеризуется конвергенцией скорости – ослаблением скорости ветра и сходимостью линий тока, по крайней мере, в слое трения. В ВЗК большое развитие получают конвективные облака с обильными осадками, шквалами. Здесь возникают также и тропические циклоны. В отдалении от экватора, особенно над сушей, ВЗК сводится к резкому тропическому фронту с существенными температурными контрастами. В барическом поле ВЗК соответствует экваториальная депрессия. В течение года ВЗК меняет свое положение, смещаясь в то полушарие, в котором лето. Над Атлантическим океаном и на востоке Тихого океана она остается в северном полушарии в течение всего года.

Все эти фронты относятся к климатологическим, показывая среднее положение фронтов определенного типа в конкретном районе. Расположение климатологических фронтов тесно связано с центрами действия атмосферы.

По особенностям перемещения, вертикального строения и условий погоды выделяют теплые, холодные, малоподвижные, фронты окклюзии (последние относятся к сложным фронтам и могут быть теплыми, холодными и нейтральными).

Теплыми называются фронты, перемещающиеся в сторону более холодного воздуха. За теплым фронтом перемещается теплая воздушная масса.

Холодными называются фронты, перемещающиеся в сторону более теплой воздушной массы. За холодным фронтом движется холодная воздушная масса.

Фронты вместе с воздушными массами перемещаются со скоростью 30-35 км/ч. За сутки они могут пройти 600-800 км. При определенных условиях атмосферные фронты могут длительное время оставаться на месте. Если от срока к сроку фронт практически не перемещается, то его называют малоподвижным (квазистационарным).

При изменении циркуляционных условий может измениться направление перемещения фронта (знак фронта) участок теплого фронта может превратиться в участок холодного, и наоборот. Также могут начать смещаться и участки малоподвижного фронта. В зависимости от направления смещения по отношению к теплой или холодной воздушной массе соответствующим будет и знак фронта.

Фронты окклюзии. Поскольку участки теплого и холодного фронтов являются соседними участками одного и того же основного фронта, то образование этих участков приводит к деформации основного фронта, преобразованию барического поля и возникновению циклона, в центре которого происходит смена знака фронта.

По мере своего движения холодный фронт начинает догонять теплый, который перемещается медленнее, чем холодный. Начинается их смыкание – процесс вытеснения теплого воздуха в циклоне с образованием сложного фронта окклюзии, сочетающего в себе признаки как теплого так и холодного фронтов. Фронты окклюзии могут быть теплыми, холодными и нейтральными (когда температуры воздуха по обе стороны от фронта практически одинаковы). В любом случае, по обе стороны фронта окклюзии располагаются воздушные массы, более близкие по своим свойствам, чем воздушные массы, разделяемые холодными или теплыми фронтами. Поэтому фронты окклюзии относят к вторичным фронтам. Их горизонтальная протяженность не выходит за пределы одного циклона. Нередко на фронтах окклюзии развиваются новые циклоны.

Фронты любого типа могут быть резко выраженными (обостренными) или слабо выраженными (размытыми). Процессы образования и обострения фронтов называются фронтогенезом, процессы размывания – фронтолизом.

К оглавлению.

 

 

Циклоны и антициклоны.

Атмосфера является чрезвычайно подвижной средой, где постоянно формируются и разрушаются вихри различных размеров.

Самые мелкие из них со скоростями ветра 100-200 м/с– смерчи и торнадо, обладающие большой разрушительной силой, имеют диаметр от 20 м до 1-2 км. Время их существования – от нескольких минут до нескольких часов.

Наиболее крупные атмосферные вихри – внетропические циклоны и антициклоны, имеющие различные размеры и достигающие в диаметре нескольких тысяч километров.

Кроме внетропических циклонов и антициклонов выделяют еще тропические циклоны, субтропические антициклоны.

Тропические циклоны зарождаются в штилевой зоне над океанами (преимущественно между широтами 5-20 ° обеих полушарий). В зависимости от района образования тропические циклоны они носят следующие названия: в тропической зоне Тихого океана – тайфуны, в Атлантике – ураганы, в Австралии – вилли-вилли.

По сравнению с внетропическими вихрями, тропические циклоны имеют меньшие размеры (десятки и сотни километров), но обладают значительно большими энергетическими ресурсами.

В северном полушарии тропические циклоны образуются преимущественно во второй половине лета и осенью, в южном полушарии – чаще в декабре-марте. Давление в центре тропического циклона в среднем составляет 960-970 мб, но зафиксированы значения до 900 мб и ниже.

Интересной особенностью тропических циклонов является глаз бури – зона в центре, имеющая круглую форму, диаметром до нескольких десятков километров (до 60 км).

В этой зоне наблюдаются мощные нисходящие движения воздуха, значительно повышающие температуру воздуха, отсутствие облачности и осадков, слабые ветры.

При прохождении тропического циклона возникают скорости ветра, не поддающиеся измерениям. О них судят по разрушениям, остающимся после прохождения тропического циклона. Осадки тропических циклонов можно сравнить с водопадами, низвергающимися с неба. Тропические циклоны наносят огромный материальный ущерб и уносят немало человеческих жизней.

Субтропические антициклоны возникают над океанами по обе стороны от 30-35 параллели. На климатических картах выделяют перманентные субтропические антициклоны в северном полушарии: северотихоокеанский максимум в Тихом океане, азорский – в Атлантике, в южном полушарии: южно-атлантический, южно-тихоокеанский.

Первые попытки представления об атмосферных вихрях – циклонах и антициклонах – оформились в середине 19 века, когда было замечено, что внетропические циклоны и антициклоны играют особо важную роль в изменении погоды на больших пространствах.

Обычно с прохождением циклона связывают ненастную погоду с дождями и сильными ветрами. Но циклон состоит из нескольких разнородных воздушных масс, различающихся по характеристикам погоды. В циклоне может быть и ненастная и солнечная погода – в зависимости от свойств воздушных масс в передней и тыловой его частях.

С антициклонами связывают ясную солнечную погоду без осадков со слабыми ветрами. Но встречаются антициклоны и со сплошной облачностью, осадками, свежими ветрами. Зимой антициклоны приносят с севера морозную погоду с хорошей видимостью. Летом в антициклонах развиваются кучевые и кучево-дождевые облака с ливнями и грозами.

Диаметр циклонического вихря может достигать 2-3 тысяч километров, диаметр антициклона – 3-4 тысяч километров.

На картах погоды можно увидеть одноцентровые и моногоцентровые циклоны и антициклоны, когда два или более центра ограничены общими замкнутыми изобарами или изогипсами. При этом нередко для циклонических областей применяют термин “двухцентровая депрессия”, “многоцентровая депрессия”.

Кроме этого как для циклонов, так и антициклонов, допускается использование терминов “мощный”, “ослабевает”, “старый” “молодой”, “активизируется”, “размытое барическое образование”, “минимум” – для циклонического поля, “максимум” – для антициклонического поля.

При характеристике интенсивности циклона употребляют термины: “глубокий циклон” – вихрь с несколькими замкнутыми изобарами и низким давлением в центре; “неглубокий циклон” – при давлении в центре на 5-10 мб ниже, чем на периферии, “заполняющийся циклон” – при повышении давления в центре, “углубляющийся циклон” – при понижении давления в центре.

При характеристике интенсивности антициклона в случае роста (понижения) давления в центре употребляют термин “усиливается” (“разрушается”).

Если интенсивность различна, то циклон, возникший на периферии уже существующего называют вторичным или частным. В случае подобной ситуации для антициклонического поля – вторичный антициклон или отрог.

Барические образования смещаются в соответствии с основным переносом воздушных масс с запада на восток. Но при этом их траектории могут иметь свои особенности. В целом у циклонов преобладают траектории, направленные с юго-запада на северо-восток, у антициклонов – с северо-запада на юго-восток.

Обычно при характеристике траектории употребляются дополнительно название географического района либо части света, откуда смещается барическое образование: южный циклон – циклон, смещающийся с юга, западный – с запада. Термин “полярный” у антициклона означает смещение с северо-запада, ультраполярный – с северо-востока, “ныряющий” циклон означает перемещение с севера или северо-запада на юг или юго-восток.

В некоторых районах барические образования становятся малоподвижными и могут существовать (стационировать) длительное время.

Длительно существующие обширные глубокие малоподвижные циклоны называют центральными. Малоподвижные длительно существующие области высокого давления называют стационарными или блокирующими антициклонами.

При этом сюда вливаются новые барические образования того же знака. В этом случае говорят о синоптических центрах действия атмосферы, указывая их географическое положение (исландский циклон, северотихоокеанский антициклон и т.д.).

На климатических картах атмосферного давления (месячных, сезонных и годовых) выявляются климатологические центры действия атмосферы (ЦДА). Например, алеутская депрессия, северотихоокеанский максимум, исландский минимум и т.д.

Большая часть циклонов и антициклонов относятся к фронтальным барическим образованиям.

Вследствие неравномерного распределения тепла по широтам и постоянного переноса холодных и теплых масс воздуха в тропосфере происходит неравномерное распределение горизонтальных градиентов температуры. Районы, где происходит сближение тропосферных масс воздуха с различными температурными свойствами, называются тропосферными фронтальными зонами. Фронтальные зоны тропосферы являются зонами наибольших запасов потенциальной энергии, которая расходуется на образование фронтальных циклонов и антициклонов.

Кроме фронтальных барических образований, могут существовать и нефронтальные циклоны и антициклоны, формирующиеся в однородной воздушной массе под воздействием прогрева или охлаждения подстилающей поверхности – термические или местные циклоны и антициклоны, локально связанные с конкретным районом. Зимой местные циклоны возникают над открытыми морями, окруженными холодной сушей, летом– над прогретыми участками континента.

Термические антициклоны летом возникают над охлажденными морями, зимой – над выхоложенными частями суши. Как правило, это неглубокие и размытые барические образования с малыми барическими градиентами. Продолжительность их существования может не превышать нескольких часов.

Под влиянием местного препятствия на наветренной стороне иногда возникают орографические антициклоны, на подветренной – орографические циклоны. Орографические циклоны и антициклоны обычно привязаны к конкретному физико-географическому району (например орографические циклоны северного Кавказа, Скандинавии), они малоподвижны и исчезают при смене направления воздушного потока.

При благоприятных циркуляционных условиях и термические и орографические циклоны и антициклоны могут превратиться во фронтальные барические образования и приобрести поступательное движение.

 

Еще до того, как при помощи высотных измерений было обнаружено существование струйных течений, Бергенская школа метеорологов в Норвегии разработала модель образования депрессии на полярном фронте. Основные черты этой модели показаны на рис. 2.1.11.

Рис. 2.1.11. Развитие циклона средних широт согласно бергенской модели (по Н Стралеру)

 

Циклон, или депрессия, образуется там, где на полярном фронте развивается волна, приводящая к проникновению языка теплого тропического воздуха в область полярной воздушной массы. Поскольку вся система движется на восток, теплый фронт, вдоль которого перемещается теплый воздух, вытесняя собой холодный воздух, отличается от холодного фронта, следующего за ним, в котором ситуация противоположна. Воздушные массы сходятся вдоль полярного фронта, и теплый воздух стремится расположиться над холодным воздухом в теплом фронте, в то время как в холодном фронте холодный воздух подтекает под теплый. Подъем воздуха приводит к понижению давления на поверхности; при этом изобары окружают центр низкого давления. Около поверхности ветры дуют поперек изобар под углом, величина которого определяется характеристиками поверхности. В результате получается, что воздух движется по спиралям к центру депрессии и одновременно поднимается. По мере того как воздух в теплом секторе постепенно поднимается, холодный фронт сближается с теплым наступает фаза окклюдирования депрессии. Хотя наверху присутствует теплый воздух, а изобары и поле ветра все еще указывают на циклонический характер движений, однако единственным фронтальным контрастом на поверхности является граница раздела между вновь поступившим холодным воздухом, располагающимся в тыловой части депрессии, и трансформированным холодным воздухом в передней части. Такая окклюзия может быть как холодной, так и теплой в зависимости от процессов, определивших трансформацию холодного воздуха. Время существования этих депрессий зависит от длительности процесса превращения потенциальной энергии в кинетическую; они разрушаются, когда исчезает контраст между соседними воздушными массами.

Поскольку депрессии связаны с подъемом воздуха (а значит, и с конденсацией водяного пара) и с сильными ветрами, они значительно влияют на погоду (рис. 2.1.12.), которая может рассматриваться как одна из особенностей теплого и холодного фронтов депрессии.

Рис. 2.1.12. Типичная фронтальная депрессия в северном полушарии Показаны изобары (давление в мб), фронты, ветер, облака и области осадков.

 

Теплые фронты обычно имеют наклоны менее 1/100. Таким образом, подъем воздуха происходит постепенно (до момента, пока теплый воздух не станет неустойчивым), с образованием слоистых форм облаков. Первый знак приближения теплого фронта появление перистых облаков на высотах порядка 10 км. По мере приближения фронта облака становятся мощнее и высота их уменьшается. Сама поверхность фронта ведет себя как устойчивый слой, иногда как инверсия, поэтому все облака, формирующиеся в холодном воздухе позади фронта, имеют ограниченную вертикальную мощность. Высоко-слоистые облака чаще всего несут с собой моросящий дождь, находясь в 500 км впереди фронта, и уступают место по мере его продвижения слоисто-дождевым облакам, приносящим сильный дождь.

Впереди теплого фронта давление постепенно падает, температура медленно растет, а ветры (в северном полушарии) дуют в основном с юга, причем с возрастающей силой. После прохождения фронта они меняют направление на юго-западное. В теплом секторе депрессии температура, давление и ветер остаются примерно постоянными. Количество облаков и осадков зависит существенным образом от характеристик теплой воздушной массы. Как правило, она является устойчивой, но в ряде случаев (особенно когда элементы орографии вызывают подъем воздуха) могут развиваться слоистые облака, приносящие моросящий дождь, а в солнечный полдень образуются кучевые облака. Над относительно холодной поверхностью моря наблюдается адвективный туман и видимость обычно плохая.

Приближение холодного фронта означает резкое изменение погоды. Холодный воздух подтекает под теплый, при этом наклон холодного фронта составляет около 1/50 и увеличивается у поверхности, где продвижение фронта замедлено из-за трения. Восходящие потоки, таким образом, более сильные, поэтому в них легче развивается неустойчивость. Это приводит к образованию кучево-дождевых облаков в виде башен и выпадению значительных ливней, сопровождаемых грозами. Ветер обычно при прохождении фронта резко меняет направление на северное или северо-западное (в северном полушарии) и резко усиливается, переходя в шквал. Температура при этом резко падает, давление начинает расти, и видимость существенно улучшается (за исключением районов, где идут ливни). Погода за холодным фронтом зависит от характеристик холодной воздушной массы. Неустойчивость атмосферы приводит к установлению ясной погоды, но с большим количеством ливней.

Окклюзиям также сопутствуют облачность и осадки (рис. 2.1.13). Теплая окклюзия по своим чертам напоминает теплый фронт, но при этом впереди приземного фронта располагается верхний холодный фронт, которому сопутствуют кучевая и кучево-дождевая облачность и ливни. При прохождении холодной окклюзии наблюдаются некоторые особенности холодного фронта с той разницей, что ей предшествует (и в какой-то степени за ней следует) облачность, характерная для теплого фронта. Редкая облачность после прохождения холодной окклюзии не столь характерна, как в случае холодного фронта.

Фронтальные депрессии южного полушария в принципе такие же, как и в северном полушарии, однако если на фронтах северного полушария ветер поворачивает по часовой стрелке, то в южном полушарии он поворачивает в обратном направлении (с севера на северо-запад на теплом фронте и с запада на юго-запад на холодном).

Рис. 2.1.13. Окклюдированный циклон, показанный в поле изобар, и вертикальные разрезы окклюзии теплого (б) и холодного (в) типов.

 

Подобные модели позволяют делать прогноз погоды на сутки во фронтальных депрессиях при условии, что синоптические наблюдения охватывают достаточно большую площадь. Для Европы район наблюдений должен простираться на запад, охватывая прилегающие районы Атлантического океана, поскольку депрессии обычно движутся со скоростью 1000 км в день (направление и 70% скорости приземного геострофического ветра в теплом секторе дают примерную оценку для перемещения депрессии). Каждая депрессия имеет свои индивидуальные особенности, и ни одна идеализированная модель не может описать какую-то конкретную депрессию. Однако общие черты представленных выше моделей можно найти в каждом отдельном случае. Наблюдения в верхних слоях атмосферы существенно облегчают прогноз погоды в районе, занятом депрессией, благодаря двум обстоятельствам. Во-первых, известно, что между дивергенцией западного потока верхней тропосферы и образованием депрессии (циклогенезом) имеется связь, позволяющая использовать соображения завихренности (глава 12); во-вторых, ясна роль западного потока в “управлении” поведением депрессии. В средних широтах помимо класса фронтальных депрессий, описанных выше, встречаются и другие типы депрессий. Фронтальные депрессии часто двигаются вдоль полярного фронта целыми семействами, и часто вторичные депрессии вовлекаются в движение вокруг большого циклона. Наиболее распространены среди них депрессии, образующиеся “на хвосте” холодного фронта первичного циклона и оказывающиеся “сцепленными” с ним. Как правило, каждый последующий член семейства депрессий двигается по траектории, расположенной ближе к экватору, чем траектория предыдущего. Не фронтальные депрессии средних широт включают в себя орографические циклоны, образующиеся с подветренной стороны основных препятствий, создаваемых рельефом; термические циклоны, возникающие из-за неравномерного нагрева поверхности, в особенности поверхности суши в летний период, полярные циклоны, которые иногда формируются при движении холодной неустойчивой воздушной массы над теплой поверхностью моря.

 

Стадии развития циклонов умеренных широт.

В жизни циклона и антициклона выделяют несколько стадий развития:

1) начальная стадия (стадия возникновения),

2) стадия молодого циклона (антициклона),

3) стадия максимального развития,

4) стадия заполнения циклона или разрушения антициклона

Для начальной стадии, длящейся примерно сутки, характерен процесс от первых признаков возникновения барического образования до появления первой замкнутой изобары на приземной карте погоды. Разность давления между центром и периферией составляет не более 5-10 мб. На высотах вихри в начальной стадии не прослеживаются.

Во второй стадии развития, продолжительность которой также обычно не более суток, барические образования имеют уже не менее 2-х замкнутых изобар. Термобарическое поле деформируется, циклон углубляется, антициклон усиливается, превращаясь в мощный атмосферный вихрь со значительными скоростями ветра. Циклоническая циркуляция распространяется в верхние слои атмосферы.

Третья стадия характеризуется наименьшим (наибольшим) давлением в центре циклона. Продолжительность стадии не более 12-24 ч.

В последней стадии циклон (антициклон) заполняется (разрушается). У поверхности Земли в центра циклона давление повышается, в центре антициклона – понижается. Горизонтальные градиенты давления и скорости ветра постепенно уменьшаются. Данная стадия наиболее продолжительна – 4 суток и более.

В каждой стадии развития циклон имеет своеобразную трехмерную структуру и каждая стадия отличается особенностями погоды.

Обычно с прохождением циклона связывают ненастную погоду с дождями и сильными ветрами. Но циклон состоит из нескольких разнородных воздушных масс, различающихся по характеристикам погоды. В циклоне может быть и ненастная и солнечная погода – в зависимости от свойств воздушных масс в передней и тыловой его частях.

Дожди, связанные с циклоническими системами, в теплый период орошают землю, а зимой снежный покров защищает посевы от вымерзания. С другой стороны, циклоны являются причиной возникновения опасных явлений погоды, которые принося большие бедствия. Например, штормовые волны, возникающие в результате сильных ветров, опасны для морских судов, разрушают портовые сооружения.

Сильные ветры с бортовой и килевой качкой и рысканием судна, приводят к потере скорости, ограничению комфортности условий обитания моряков и рыбаков, создают определенную угрозу безопасности судна и затрудняют проведение производственных операций.

Специфическую опасность для проведения морских операций представляет обледенение, вероятность и интенсивность которого увеличивают сильные и штормовые ветры, высокие волны. В подавляющем большинстве наиболее велика вероятность обледенения в тыловой части хорошо развитого циклона при адвекции холодного воздуха, которая сопровождается сильными ветрами преимущественно северо-западного и северного направлений. Зона обледенения располагается в тылу циклона на некотором удалении от холодного атмосферного фронта, где имеют место низкие температуры воздуха и хорошее развитие получает волнение.

Обильные осадки, выпадающие в период созревания зерновых или во время уборки урожая, наносят вред сельскому хозяйству, снежные заносы нарушают нормальную работу всех видов транспорта.

В процессе классического развития циклон обычно превращается в высокое малоподвижное барическое образование с квазивертикальной осью. Продолжительность каждой стадии колеблется от нескольких часов до нескольких суток. Наименее продолжительны начальные стадии развития циклона.

Возникновение волны на квазистационарном фронте (либо на фронте не имеющем строгой стационарности) сопровождается деформацией термобарического поля тропосферы. Теплый воздух получает тенденцию движения в сторону холодного, давление у вершины волны начинает понижаться, что способствует развитию здесь циклонической циркуляции.

В тылу волны появляется составляющая ветра, направленная от холодного воздуха к теплому – этот участок волны становится холодным. Впереди волны формируется термический гребень, в тылу – термическая ложбина. У поверхности Земли появляются замкнутые изобары.

Перестройка термобарического поля сопровождается изменением вертикальных составляющих движений воздуха и, соответственно, преобразованием фронтальной облачной волны. Впереди волны в результате восходящего скольжения теплого воздуха формируются мощные слоистые облака Ns-As-Cs.

Если первоначально вдоль главного фронта наблюдалась полоса осадков, связанная с конвергенцией трения или с тем, что фронт не имел строгой стационарности, а был, например, холодным на всем протяжении, то при развитии волны облачная полоса становится шире, осадки активизируются, принимая обложной характер.

В тылу волны в результате динамической и термической конвекции формируется кучевообразная облачность.

По мере развития циклона деформация фронтальной облачной полосы увеличивается и циклон переходит в следующую стадию – молодого циклона.

На ранних стадиях циклона можно условно выделить три зоны, различающиеся по своим погодным характеристикам:

1) передняя часть циклона,

2) теплый сектор циклона,

3) тыловая часть циклона.

Погода в передней части циклона формируется под воздействием теплого фронта, который является условной тыловой границей данной зоны.

При надвижении типичной облачной системы теплого фронта (облака восходящего скольжения), которая имеет горизонтальное распространение на тысячи километров, на расстоянии 900-1000 км от линии приземного теплого фронта наблюдатель фиксирует облачную полосу тонких прозрачных перистых облаков (Ci) вместе с перисто-слоистыми.

Перистые облака характерны для переднего края облачной системы теплого фронта. Эти облака находятся на высотах 6-8 км. Перистые облака хорошо просвечивают Солнце, Луну, звезды. Имеют вид параллельных нитей, крючкообразно загнутых вверх (Ci uncinus) Состоят из ледяных кристаллов.

Перисто-слоистые облака представляют прозрачную белую однородную пелену, закрывающую все небо и часто дают явления гало около Солнца или Луны.

С приближением теплого фронта на расстоянии около 600 км от него перистые и перисто-слоистые облака сменяются высоко-слоистыми просвечивающими (As trans.) и высоко-слоистыми плотными (As op.).

Высоко-слоистые просвечивающие облака имеют вид сероватой или синеватой однородной облачной пелены, иногда несколько волокнистого вида, постепенно обволакивающей все небо. Солнце и Луна просвечивают сквозь облачный слой как сквозь матовое стекло. Высоко-слоистые плотные – однородный серый покров, часто неоднородной плотности. Солнце и Луна не просвечивают.

Эти облака в умеренных широтах наблюдаются на высотах 2-7 км. Их вертикальная мощность достигает нескольких километров. Облачная полоса имеет ширину около 300 км. Состоят из смеси переохлажденных капель и кристаллов и дают осадки в виде полос падения, которые зимой могут достигать земной поверхности. Летом осадки из As не достигают поверхности Земли, испаряясь при движении через теплые слои воздуха под облаками (псевдоморосящие осадки).

Под высоко-слоистыми облаками располагаются плотные слоисто-дождевые облака (Ns), вплотную прилегающие к теплому фронту. Ns напоминают по внешнему виду As, но более темного цвета.

Вблизи центра циклона, где наблюдается наибольшая толщина облаков, система облаков As-Ns имеет ширину около 500-600 км.

Обычно облака Ns закрывают все небо без просветов. Зона Ns распространяется в ширину на 300 км. Из Ns выпадают обложные осадки.

Основная часть Ns в умеренных широтах лежит между 2 и 7 км, однако, основание их часто находится ниже 2 км, а верхняя граница может достигать 8 км.

Одни Ns наблюдаются редко – обычно под ними образуются разорванные дождевые облака (Fr nb. – термин Fr nb. относится к разорванно-кучевым или разорванно-слоистым облакам, если они наблюдаются под слоем слоисто-дождевых облаков, из которых выпадают осадки).

Если в пограничном слое профиль теплого фронта пологий, то основная система облаков и зона обложных осадков может быть смещена вперед от линии фронта.

Летом в дневные часы восходящие движения вблизи линии теплого фронта иногда приобретают характер конвективных и в предфронтальной облачности могут наблюдаться конвективные облака, осадки переходят в ливневые, нередко сопровождающиеся грозами.

При скорости теплого фронта около 30 км/ч продолжительность прохождения системы облаков теплого фронта через пункт составляет в среднем около суток, в том числе, зоны обложных осадков – около 10ч.

В передней части циклона отмечается падение давления, все усиливающееся по мере приближения теплого фронта.

Ветер в передней части циклона, движущегося в целом с запада на восток, имеет преимущественно юго-восточное направление.

Погода в теплом секторе циклона отличается прекращением обложных осадков из Ns, повышением температуры воздуха, поворотом ветра от юго-восточного к юго-западному направлению. После прохождения фронта наблюдается значительное ослабление падения давления, которое заканчивается его ростом за холодным фронтом, являющимся тыловой границей теплого сектора.

Летом при значительной облачности в теплом секторе температура воздуха может существенно не отличаться от температуры воздуха перед теплым фронтом. Иногда в теплом секторе могут наблюдаться более низкие температуры воздуха, чем в воздушной массе перед теплым фронтом (маскировка теплого фронта).

Воздушная масса теплого сектора является преимущественно влажной и устойчивой. Здесь могут возникать облака динамической конвекции – слоистые и слоисто-кучевые (St, Sc). Слоистые туманообразные (St neb.) облака могут располагаться так низко, что закрывают верхние части высоких наземных предметов и сходны с туманом. Нередко в теплом секторе наблюдаются адвективные туманы, сопровождающиеся сильным ветром.

Если же динамическая конвекция развита незначительно, например, при слабых ветрах, или же уровень конденсации лежит выше верхней границы динамической конвекции, то наблюдается ясная погода.

Значительных осадков в теплом секторе обычно не наблюдается, из слоистых облаков, являющихся капельно-жидкими, могут выпадать моросящие осадки, а из слоисто-кучевых зимой – слабый снег.

В отдельных случаях вертикальная мощность слоистых облаков возрастает настолько, что они достигают своей верхней границей уровня кристаллизации, превращаются в слоисто-дождевые и начинают давать обложные осадки.

Когда теплый фронт располагается в резко выраженной ложбине и перемещается медленно, восходящие движения могут захватывать и зафронтальную область. В этом случае система облаков восходящего скольжения As-Ns располагается по обе стороны теплого фронта, причем, за фронтом облачная система значительно расслоена и либо не дает осадков, либо осадки слабые, часто имеющие характер мороси.

Летом в теплом секторе циклона над сушей воздушная масса может быть неустойчивой либо с малооблачной погодой, либо с кучевой, иногда кучево-дождевой облачностью, с ливневыми осадками, часто с грозами, в том числе, ночными, радиационными туманами (преимущественно после выпадения дождя и ночного прояснения).

В тыловой части теплого сектора на расстоянии около 200 км от холодного фронта 2-го рода появляются перисто-кучевые облака (Cc), иногда чечевицеобразные (Cc lent.), ниже которых располагаются высоко-слоистые чечевицеобразные (Ас lent.), переходящие постепенно в слоисто-кучевые (Sc). Перед холодным фронтом, параллельно ему, располагается массив кучево-дождевых облаков – плотных и мощных облаков со значительным вертикальным развитием в форме гор и башен. Верхняя часть Cb может быть довольно гладкой (Cb calvus – лысые), но часто имеет форму наковальни (Cb incus), шапки (Cb pileus) или вуали (Cb capillatus, Cb velum).

Кучево-дождевые облака состоят из капелек воды (при низких температурах воздуха – переохлажденных), а в верхних частях – из ледяных кристаллов. Основания облаков лежат обычно ниже 2 км, вершины могут простираться до высот верхней тропосферы. Таким образом их мощность может изменяться от 3 до 10 км.

Основные осадки будут выпадать из полосы Cb перед холодным фронтом, имеющей ширину около 70 км. Осадки из Cb имеют ливневый характер с грозовыми явлениями, градом. При большой сухости теплого воздуха холодный фронт может проходить, не давая осадков.

Для фронтальных гроз особенно характерны шквалы (резкое усиление ветра до 20-30 м/с и более).

В некоторых случаях видимым проявлением шквала является хобот (tuba), представляющий облачный столб, исходящий из основания кучево-дождевого облака с вихревым движением воздуха.

При большом влагосодержании и значительной неустойчивости атмосферы из мощного грозового облака, нижнее основание которого принимает форму опрокинутой воронки, по направлению к поверхности Земли или моря вытягивается гигантский темный хобот.

Если вихрь образуется над морем его называют смерчем, над сушей – тромбом. Навстречу ему приподнимается широкая воронка из пыли (на суше) или воды (на море).

В открытую чашу воронки хобот как бы погружает свой конец (с подъемом воздуха по спирали). Образуется сплошной столб, перемещающийся с большой скоростью (до 100 и более км/ч). Скорости ветра в смерче достигают 50-100 м/с при сильной восходящей составляющей.

Из грозового облака может опуститься несколько смерчевых воронок. При этом происходит втягивание в систему вихря всего, что встречается на его пути, затем эти предметы выпадают из облака, иногда на значительном расстоянии от места всасывания. Время его существования – от нескольких минут до нескольких часов.

Разность давления между центром вихря и его периферией иногда достигает 150-200 гПа. При такой разности давления происходят катастрофические разрушения, ветер может поднять вверх людей, скот, автомобили, крыши домов, мосты.

Погода в циклоне за холодным фронтом типична для неустойчивой холодной воздушной массы. Здесь отмечаются кучевая, кучево-дождевая облачность, ливневые осадки, часто многократно повторяющиеся, иногда днем грозы, шквалы, ночью над материками наблюдаются радиационные туманы. Суточный ход метеорологических элементов особенно велик.

После прохождения холодного фронта отмечаются резкий поворот ветра от южного, юго-западного к северо-западному, увеличение скорости ветра, рост давления, понижение температуры воздуха (холодный воздух при ясной погоде летом быстро прогревается).

Обычно с прохождением холодного фронта осадки прекращаются. Но в случае холодного фронта 1-го рода система облаков, расположенная за фронтом (As-Ns) продолжает давать осадки обложного характера.

Если холодный воздух сухой и в нем интенсивно развиты нисходящие движения, то наблюдается безоблачная погода.

Вторая половина жизни циклона характеризуется уменьшением его поступательной скорости, значительным преобразованием термобарического поля тропосферы – циклон становится высоким, термически симметричным (холодным) барическим образованием. Процесс окклюдирования приводит к вытеснению теплого воздуха, сокращению площади теплого сектора с постепенным его исчезновением. Облачные полосы основных теплого и холодного фронтов смыкаются с образованием единой облачной спирали фронта окклюзии.

На стадии окклюдирования циклона по условиям погоды выделяют 2 зоны:

1) центральная и передняя часть циклона перед фронтом окклюзии,

2) тыловая часть циклона за фронтом окклюзии.

В случае окклюдированного циклона погода различается в зависимости от характеристик воздушных масс по обе стороны от фронта окклюзии.

В случае теплого фронта окклюзии перед ним воздушная масса будет холоднее, чем после прохождения фронта. С теплыми фронтами окклюзии связаны метели, гололеды.

В случае холодного фронта окклюзии, наоборот, тыловая масса будет холоднее. На холодных фронтах окклюзии нередко наблюдаются грозы, часты туманы, особенно при кратковременных ночных прояснениях в зоне фронта.

На фронте окклюзии имеет место сочетание облачных систем холодного и теплого фронтов – образуется общая полоса осадков из слоистых облаков восходящего скольжения (As-Ns) и конвективных кучево-дождевых облаков (Cb), которые будут выпадать как перед линией фронта, так и позади него.

В стадии окклюдирования циклона у поверхности Земли в барических ложбинах за холодным основным фронтом, где имеет место сходимость ветра, иногда образуются вторичные холодные фронты (обычно не более 2-х) – фронты внутри горизонтально неоднородной холодной воздушной массы, за которым вторгается более холодная порция этой же массы. Вторичные фронты имеют систему облаков, сходную с облачностью системы облаков холодного фронта 2-го рода, но вертикальная протяженность облаков меньше, чем у основных.

При этом в циклоне различают 3 зоны с различными характеристиками погоды, аналогично молодому циклону:

1) передняя часть циклона,

2) вторичный теплый сектор циклона, границами которого служат фронт окклюзии и вторичный холодный фронт,

3) тыловая часть циклона – за вторичным холодным фронтом.

По сравнению с теплым сектором молодого циклона во вторичном теплом секторе после кратковременного прояснения, наступающего вслед за прохождением фронта окклюзии, в тылу циклона появляются конвективные облака, связанные со вторичными фронтами, с ливневыми осадками, грозами, шквалами и метелями (рис. 12.30).

Причем, ливневые осадки наблюдаются даже в холодное полугодие, поскольку относительно теплая воздушная масса, расположенная за фронтом окклюзии, обладает значительной неустойчивостью и в верхней тропосфере уже является холодной.

Иногда при наличии на периферии циклона остатков основного теплого сектора, еще выделяют – настоящий теплый сектор.

При дальнейшем заполнении циклона вместо единой облачной полосы фронта окклюзии появляются разрозненные облачные элементы, состоящие преимущественно из кучевых облаков.

Постепенно поля давления и ветра выравниваются, циклон полностью заполняется, но вихревая структура облаков на месте бывшего циклона еще может сохраняться в течение 1-1.5 суток – т.е. значения влажности и температуры еще продолжают отличаться от окружающих значений.

 

Антициклоны умеренных широт и субтропические антициклоны.

Будучи связаны с опусканием воздуха и дивергенцией, антициклоны являются источниками воздушных масс и, как правило, характеризуются сухой спокойной погодой. Хотя при одном и том же градиенте давления скорость градиентного ветра в антициклоне должна быть больше, чем в циклоне, в реальных условиях ветер в антициклоне более слабый из-за того, что сами градиенты давления малы. У поверхности ветер, направленный по часовой стрелке в северном полушарии и против часовой стрелки в южном, пересекает изобары в направлении от центра. Воздух, таким образом, расходится, характеристики воздушной массы остаются примерно постоянными, и фронты маловероятны. Опускающийся воздух адиабатически нагревается, его относительная влажность падает, и имеющиеся облака постепенно испаряются. В нижней части опускающегося воздуха обычно возникает инверсия температуры, ограничивающая вертикальное развитие облачности, которая могла быть вызвана эффектами турбулентного перемешивания в нижних слоях или конвекции в солнечный день. Антициклоны, как правило, движутся медленно или вообще стоят на месте и поэтому приносят устойчивую погоду на несколько дней или недель. Они обеспечивают такие условия, при которых летом возникают морской и береговой бризы, а зимой - адвективный туман.

Крупномасштабные антициклоны располагаются над субтропическими районами океана, а зимой в высоких широтах над континентальными областями. Летом и зимой в средних широтах часто встречаются менее устойчивые антициклоны. Они могут быть разделены на теплые и холодные. Холодный антициклон обладает ядром повышенного давления за счет того, что воздух в нем холоднее, чем окружающий. Это небольшие по вертикали образования. Теплый антициклон возникает в результате конвергенции воздуха в высоких слоях, которая увеличивает массу воздуха в центре по сравнению с периферией. Такие образования имеют своим происхождением динамические причины и связаны с потоком в верхней тропосфере. К указанному типу относятся субтропические пояса высокого давления и антициклоны, образующиеся под волнами Россби в потоке западных ветров верхней тропосферы.

Холодные антициклоны образуются, как правило, над сушей и над полярными областями и имеют сильную температурную инверсию. В результате этого в нижних слоях скапливается пыль и различные загрязняющие примеси, что приводит к уменьшению видимости и созданию дымки, которая при наличии адвективного тумана легко переходит в смог. Если воздух остается чистым, возможны сильные морозы. Теплым антициклонам, установившимся летом над сушей, сопутствует ясная солнечная погода, причем совместное влияние солнечного излучения и адиабатического нагревания может привести к очень высоким температурам. Над морем изменения температуры поверхности меньше и меньше различия в погодных условиях в антициклонах летом и зимой. В антициклонах средних широт летом часто встречаются облака, возникшие в результате вертикального турбулентного перемешивания. Зимой может наблюдаться сплошная облачность. Однако эти облака имеют небольшую вертикальную мощность, и из них редко выпадают осадки.

 

Погода в антициклонах. Обычно с антициклонами связывают спокойную ясную или малооблачную погоду – но это очень общее представление, поскольку условия погоды в антициклоне различаются в зависимости от происхождения и свойств воздушных масс собственно антициклона и соседних с ним, влагосодержания и температуры его воздушной массы, особенностей подстилающей поверхности, рельефа местности, стадии развития возмущения, интенсивности нисходящих движений, времени года. Например, антициклоны в арктическом воздухе – преимущественно с ясной погодой, антициклоны с морским полярным воздухом нередко имеют пасмурную погоду.

Температура тропосферы растет с возрастом антициклона, особенно при его стабилизации, что объясняется развитием нисходящих движений в антициклоне и динамическим нагреванием воздуха.

В промежуточном и заключительном антициклоне холодный воздух, простирающийся до высот средней тропосферы, еще недостаточно прогрет динамически. Быстрое перемещение холодной воздушной массы в таких антициклонах создает неустойчивость стратификации с развитием турбулентности и конвекции, препятствуя нисходящим движениям.

Вместе с ростом температуры тропосферы, при развитии внетропического антициклона происходит увеличение высоты тропопаузы (до 10-11 км) и понижение температуры стратосферы. В среднем температура воздуха в тропосфере в области антициклона выше, чем в области циклона, в стратосфере температура воздуха в антициклоне, наоборот, ниже. При этом тропопауза над антициклоном лежит выше, чем над циклоном (отметим, что в циклоне тропопауза лежит на высотах 8-9 км).

В субтропических антициклонах температура воздуха на всех высотах в тропосфере выше, чем в антициклонах умеренных широт (во-первых, воздух в субтропическом антициклоне является тропическим, хотя в нижней тропосфере периодически пополняется вторжениями быстро трансформирующегося полярного воздуха, во-вторых, при стабилизации антициклона воздух оседает и динамически прогревается). Теплая тропосфера в антициклоне компенсируется холодной стратосферой, причем, тропопауза лежит на высотах 12-13 км.

Распространение субтропических антициклонов в высокие широты в значительной степени обусловлены вторжением воздушных масс с высокой тропопаузой и холодной стратосферой, характерной для низких широт.

Нисходящие движения в антициклоне удаляют воздух от состояния насыщения и обусловливают в антициклонических областях общее преобладание ясной погоды. Конденсация в антициклоне может быть вызвана преимущественно охлаждением воздуха от подстилающей поверхности или путем излучения, а также вследствие волновых процессов в атмосфере, поэтому она происходит в виде туманов, слоистых облаков и волнистых облаков под поверхностями инверсий. Летом, при отсутствии инверсий, в антициклонах могут наблюдаться конвективные облака.

Инверсии в антициклоне. Характерной особенностью в вертикальном распределении температуры воздуха в антициклонах является наличие инверсий (радиационные инверсии – как результат выхолаживания нижних слоев воздуха от подстилающей поверхности, и инверсии оседания – как результат нисходящих движений воздуха и динамического его нагревания в антициклоне).

Радиационные инверсии образуются преимущественно в ясные тихие ночи, особенно зимой. С приземными инверсиями часто связаны весенние и осенние заморозки. Большое значение в образовании приземных инверсий имеет рельеф местности. Холодный воздух, стекая вниз по неровностям рельефа, скапливается в котловинах, на дне долин, у подножия гор. Поэтому в горных районах приземные инверсии могут быть особенно сильными и мощными, обусловливая неоднородное распределение туманов и заморозков.

При стабилизации внетропического антициклона оседание воздуха, связанное с нижней дивергенцией трения (а зимой и с охлаждением и уплотнением нижних слоев воздуха) может достигать величины 1 км за сутки. Между оседающим воздухом верхних слоев и холодным воздухом нижних инверсии оседания могут иметь значительную мощность. Холодный подвижный антициклон превращается в теплый стационарный.

Таким образом, в устойчивых континентальных антициклонах к радиационным инверсиям присоединяются инверсии вышележащих слоев (инверсии оседания) – приземная инверсия может без разрыва перейти в инверсию оседания и в общем составить несколько километров по вертикали.

Под инверсиями оседания, нередко покрывающими большие районы, скапливаются пыль, частицы дыма и другие атмосферные частицы, переносимые снизу. Слои инверсии поэтому называют задерживающими слоями атмосферы. Под инверсией образуется высокий туман, который наблюдается как слоистые облака (St). Снижаясь, туман может достичь поверхности Земли.

В горах при антициклонической погоде нередко в долине пасмурно и холодно, на высотах, над инверсией – ясно и солнечно.

В слое инверсии поднимающийся воздух быстро выравнивает свою температуру со средою, и его подъемная сила исчезает. Появление кучевых облаков часто исключается существованием инверсий, либо малыми температурными градиентами. Поэтому конвекция над сушей в хорошо развитых антициклонах, содержащих инверсии оседания, развивается редко.

Если инверсия лежит выше уровня конденсации, то уже начавшие возникать облака мало развиваются по вертикали. Однако, при большой мощности и скорости восходящих движений воздуха они могут пробиться сквозь слой инверсии. Ночные приземные инверсии, придающие особую устойчивость нижнему слою атмосферы, вообще исключает возможность даже возникновения конвекции до тех пор, пока с восходом Солнца прогрев воздуха не приведет к разрушению инверсии.

Фронты в антициклоне. Ниже уровня трения антициклон является областью дивергенции скорости. Центр антициклона у поверхности Земли лежит в внутри холодного воздуха. В более высоких слоях атмосферы антициклон состоит из двух воздушных масс: здесь распределение температуры воздуха асимметрично: передняя часть антициклона холодная, тыловая – теплая (в отличие от антициклона, распределение воздушных течений в циклоне обусловливает в нем асимметричное распределение температуры воздуха как в значительной толще тропосферы, так и у поверхности Земли).

В центре антициклона у поверхности Земли фронты отсутствуют. Но, тем не менее, в антициклоне, при больших его размерах, у поверхности Земли даже в пределах одной и той же воздушной массы может существовать температурная асимметрия: в передней части антициклона ветры будут северной половины горизонта, в тыловой – южной, что допускает присутствие на периферии антициклона у поверхности Земли атмосферных фронтов. Линии фронта может также пересекать гребень по линии, примерно нормальной к его оси.

В случае промежуточного антициклона поверхность раздела между теплым и холодным воздухом в передней части холодной воздушной массы является холодным фронтом предыдущего циклона, в тыловой – теплым фронтом следующего циклона.

На южной периферии промежуточного антициклона фронт у поверхности Земли чаще представлен размытой переходной зоной.

В заключительном или стационарном антициклоне фронтальная поверхность у поверхности Земли может с ней не пересекаться, размываясь в нижних слоях воздуха.

В высоких слоях тропосферы вследствие асимметрии антициклона фронтальная поверхность находится в возмущенном состоянии, что указывает на взаимодействие воздушных масс при антициклогенезе. Фронтальные слои могут иногда располагаться и в центральной части антициклона.

Антициклон, как и циклон, является следствием волнообразования на фронте, но фронтальная поверхность в высоких слоях тропосферы в антициклоне связана с инверсией температуры, падением относительной влажности – конденсации вдоль этой поверхности не происходит, и значение ее для погоды гораздо меньшее, чем в циклоне.

Условия погоды в центре и на периферии антициклона. В центре антициклона в связи с нисходящими движениями воздуха преобладает малооблачная погода. При значительной влажности воздуха в холодную половину года под слоем инверсии оседания могут наблюдаться сплошные облака St и Sc. В любое время года в центральной части антициклона могут наблюдаться радиационные туманы.

На периферии антициклона по условиям погоды можно выделить 4 зоны: северную, южную, западную и восточную окраины.

Северная окраина антициклона непосредственно связана с теплым сектором циклона. В холодное время года здесь наблюдаются сплошная и значительная облачность слоистых и слоисто-кучевых облаков (St, Sc), слабые осадки, туманы.

Иногда здесь наблюдаются осадки из системы облаков As-Ns, связанных с теплым фронтом примыкающего циклона. Летом могут развиваться кучевые облака.

Южная окраина антициклона примыкает к северной части циклона. Здесь нередки облака верхнего яруса, иногда – среднего, причем, зимой из высоко-слоистых облаков (As op.) осадки в виде снега достигают Земли. При значительных градиентах давления отмечаются сильные ветры (например, типа новороссийской боры), метели.

Западная периферия антициклона, примыкающая к передней окраине циклона, отличается сильными ветрами, особенно, когда антициклон малоподвижен (блокирующий антициклон) и на его периферии создаются значительные градиенты температуры и давления.

Здесь характерны облака верхнего яруса (Ci), являющиеся признаками теплого фронта. В холодное полугодие нередко отмечаются слоистые и слоисто-кучевые облака (St, Sc), достигающие значительной вертикальной мощности, выпадают осадки. Летом при высоких температурах воздуха и значительной его влажности появляются облака вертикального развития, сопровождающиеся грозовой деятельностью.

Восточная окраина антициклона граничит с тыловой частью циклона. В неустойчивой воздушной массе летом и днем развиваются все виды кучевых облаков, с кучево-дождевыми облаками связаны ливневые осадки, грозы. Зимой преобладает безоблачная или малооблачная погода.

Итак, ясная и солнечная погода без осадков со слабыми ветрами в антициклоне летом благоприятствует быстрому созреванию сельскохозяйственных культур, а осенью – сбору урожая.

Однако, продолжительное стационирование антициклонов весной и летом в одном районе сопровождается засухой: гибнут посевы, горят леса. Весной на периферии антициклона нередко возникают губительные для посевов суховейные ветры. Зимой в районах антициклонов при низких температурах воздуха и отсутствии снежного покрова вымерзают озимые. Встречаются антициклоны и со сплошной облачностью, туманами, осадками, свежими ветрами.

Циклоны и антициклоны являются основным механизмом междуширотного теплообмена. Если бы не было такого теплообмена между низкими и высокими широтами, то на экваторе и в тропиках температура воздуха была бы на 10-20 °С выше, а в умеренных широтах ниже, чем наблюдающаяся в действительности. Именно циклоны и антициклоны обеспечивают перенос теплых и влажных воздушных масс воздуха с юга на север, а холодных и сухих – с севера на юг.

 

Перемещение циклонов и антициклонов.

Барические образования у поверхности Земли в большинстве случаев перемещаются по направлению устойчивого воздушного потока над ними на высоте поверхности АТ700 или АТ500 со скоростью, пропорциональной скорости на соответствующей поверхности, т.е. по правилу ведущего потока.

В среднем коэффициент пропорциональности между скоростью ведущего потока и скоростью перемещения барических образований составляет 0.8 для АТ700 и 0.6 для АТ500.

Но расчеты показывают, что коэффициент пропорциональности зависит от скорости ведущего потока (табл. 5.):

Табл. 5. Коэффициент пропорциональности в зависимости от скорости ведущего потока.

Скорость ведущего

потока, км/ч

Коэффициент пропорциональности

АТ700

АТ500

< 30

1.5

1.2

30-35

1.2

1.0

35-45

1.0

0.8

45-55

0.8

0.6

55-85

0.7

0.5

85-100

0.6

0.4

 

Правило ведущего потока приближенно отражает картину перемещения барических образований. Строго говоря, циклоны и антициклоны, перемещаясь в направлении ведущего потока, нередко отклоняются от направления изогипс на поверхности АТ700 или АТ500.

Скорости перемещения циклонов колеблются в широких пределах. В начальной стадии развития низкие циклоны перемещаются со скоростью 40-50 км/час, а в некоторых случаях скорость увеличивается до 80-100 км/ч.

Активное перемещение циклонов происходит до тех пор пока над ними в средней тропосфере сохраняется устойчивый воздушный поток – ведущий поток. Наиболее часто перемещение циклона происходит от западной половины горизонта к восточной, в соответствии с направлением ведущего потока. Аномальность перемещения барических центров относительно ведущего потока, как показано выше, определяется рядом факторов, основным из которых является неравномерное локальное изменение градиента геопотенциала над перемещающимся центром.

Таким образом, в соответствии с основным западно-восточным переносом воздушных масс в атмосфере, восточная часть циклона является передней его частью, западная – тыловой. Отступления от этого правила имеются, если направление ведущего потока резко отличается от западно-восточного направления.

Когда циклоны становятся высокими (начиная с третьей стадии развития), то их скорость резко уменьшается. Заполняющиеся циклоны являются квазисимметричными и холодными. В средней тропосфере они имеют замкнутые изогипсы, т.е. ведущий поток определенного направления над центром циклона уже отсутствует, и циклоны, как правило, становятся малоподвижными (квазистационарными). При этом циклонический центр иногда описывает петлю.

К оглавлению.

 

 

Тропические циклоны.

Тропический циклон, определяемый Всемирной метеорологической организацией (WMO, 1966) как «циклон тропического происхождения малого диаметра (несколько сотен километров) с минимальным давлением у поверхности, иногда менее 900 мб, очень сильными ветрами и проливным дождем; иногда сопровождается грозами. В нем обычно различают центральную область, или «глаз урагана», с диаметром порядка нескольких десятков километров, слабым ветром и более или менее незначительной облачностью».

Тропические циклоны могут сопровождаться сильными дождями, наводнениями, в открытом море - образованием волны высотой более 10 м, штормовыми нагонами. Радиус сильных ветров может превысить 300 км. Ежегодно на Земле развивается в среднем 70 тропических циклонов. Средняя продолжительность урагана - около 9 дней, максимальная - 4 недели.

Тропические штормы впервые были названы ураганами в Карибском море, а затем это наименование распространили на все тропические циклоны в южной части Тихого и Индийского океанов и северной части Атлантического океана, если ветер в циклоне приобретал огромную силу. В Китайском море, обычно в западной части северной половины Тихого океана и в Индийском океане над Бенгальским заливом их называют «тайфунами». Термин «тайфун» укоренился еще с давних исторических времен (по-китайски иероглиф «тай» означает сильный ветер) в применении к ТЦ западной части Тихого океана в Северном полушарии, а именно эти вихри и представляют собой серьезную опасность для дальневосточных регионов России – Приморья, о. Сахалин, Курильских о-вов и Камчатки.

Тайфуны западной части Тихого океана образуют наиболее мощный очаг ТЦ по сравнению с другими регионами. Более 30% их приходится именно на эту часть Мирового океана. Хотя лишь малый процент тайфунов на деле представляет опасность для российского Дальнего Востока, ущерб от этих явлений весьма значителен.

По различным подсчетам (Hughes, 1952; Miller, 1958a), в пределах среднего урагана за день выделяется от 2.0 до 6.0 х 1026 эргов в виде тепла. Наибольшая цифра эквивалентна приблизительно 16 триллионам киловатт-часов за день. Этой энергии достаточно для снабжения электричеством всех Соединенных Штатов в течение полугода.

Энергия среднего урагана равна 500000 атомных бомб. Атомный взрыв в Бикини поднял в воздух 10000000 т воды, но за несколько часов во время урагана на Пуэрто-Рико обрушилось 2 500 000 000 т дождя, в 250 раз больше, чем в Бикини. Тепло, освобождаемое большим ураганом, равно теплу, возникающему при сгорании 2—3 млн. т угля. За один день такой ураган расходует энергию, равную энергии взрыва 13 000 мегатонных ядерных бомб.

Строение тропических циклонов. Тропические циклоны представляют собой огромные вихри, достигающие в диаметре 1000 - 1500 км, а иногда и более, и простирающиеся по вертикали на всю тропосферу (до 15 - 18 км). Максимальная скорость ветра в наиболее мощных ТЦ достигает vm = 90 - 100 м/с (т.е. 300 - 360 км/ч) и минимальное давление у поверхности океана в центре вихря po доходит до рекордно низких в метеорологии значений (абсолютный минимум – 870 гПа – был зафиксирован в супертайфуне Тип в октябре 1979 г.).

Климатология тропических циклонов определяется, прежде всего, основным источником, поддерживающим их существование – выделением скрытой теплоты конденсации влаги, что в максимальной степени происходит над тропическими океанами, причем там, где температуры их поверхности To наивысшие критическими значениями To считаются значения 26 - 27°С.

В Северном полушарии ТЦ возникают, прежде всего, в следующих океанических областях (рис. 2.1.14):

Рис. 2.1.14. Среднее годовое число тропических циклонов по пятиградусным квадратам (штриховые линии) и основные направления их перемещения (стрелки)

 

  1. 1) в Тихом океане – к востоку от Филиппинских островов и в южной части Южно-Китайского моря, в основном, с мая по ноябрь, а также к западу от Калифорнии и Мексики с июня по октябрь;

  2. 2) в Атлантическом океане – к востоку от Малых Антильских островов и на востоке Карибского моря с июля по октябрь, к северу от Больших Антильских островов с июля по октябрь, в западной части Карибского моря в июне и с конца сентября до начала ноября, в Мексиканском заливе с июня по ноябрь и, наконец, у островов Зеленого Мыса с июля по октябрь;

  3. 3) в Индийском океане – в Аравийском море в мае - июне и октябре - ноябре, а также в Бенгальском заливе с июня по ноябрь.

  4. 4) В Южном полушарии ТЦ зарождаются в Индийском океане – к востоку от Мадагаскара и северо-западнее Австралии с ноября по апрель - май, а в Тихом океане – в районе островов Новые Гебриды и островов Самоа с декабря по апрель.

В целом, следует заключить, что ТЦ чаще всего образуются в тропической зоне между 4 и 30° широты (ближе к экватору, из-за недостаточной величины закручивающего момента, связанной с силой Кориолиса – ноль на экваторе – ТЦ образуются крайне редко). Наиболее часто ТЦ возникают между 10 и 15°.

Горизонтальные размеры ТЦ, определяемые радиусом последней замкнутой изобары, зависят от географического района и сезона. Тихоокеанские тайфуны – самые крупные из них, их диаметр, в среднем, составляет 600 - 800 км (для ураганов Атлантики – 400 км).

Рис. 2.1.15. Схема структуры зрелого тропического циклона. (Руководство..., 1986). 1 — башни кучевых облаков в глазе бури; 2 — конвективные облака; 3 — высокослоистые облака; 4 — перистые облака

 

Схематически структура зрелого ТЦ представляет следующее. В нижнем слое атмосферы (толщиной 2 - 5 км) в циклоне воздух устремляется к центру, при этом ветер усиливается и достигает максимальных значений в узкой кольцеобразной зоне вокруг центра ТЦ, удаленной от него на 20 - 100 км. В зоне максимальных ветров устанавливается приблизительное равновесие между силой барического градиента, направленного к центру циклона, и силами противоположной направленности: центробежной и Кориолиса (так называемой градиентный баланс). Не имея возможности двигаться дальше к центру ТЦ, воздух вытесняется вверх и поднимается в мощных кучево-дождевых облаках, перенося с собой количество движения, тепло и влагу. В верхней тропосфере воздух отклоняется от центра наружу, образуя слой оттока, в котором переносится завеса (или «щит») перистых облаков. Отток концентрируется вблизи изобарической поверхности 150 гПа. В отличие от нижнего слоя, циркуляция здесь совершенно асимметрична, а по направлению становится антициклонической (рис. 2.1.15).

Внутри и вблизи зоны максимальных ветров формируется «глаз бури» (самая внутренняя, обычно свободная от облаков зона ТЦ диаметром от 5 до 50 км), с окружающей его «стеной» облачности. Глаз образуется в ТЦ не всегда, а только лишь тогда, когда давление в центре на уровне моря po падает ниже 985 гПа и максимальная скорость ветра превышает 23-25 м/с.

Другой характерной структурной особенностью ТЦ являются спиральные полосы кучево-дождевых облаков и дождя, движущиеся против часовой стрелки (в Северном полушарии) вокруг центра ТЦ.

В центральных областях тайфунов градиент давления может составлять 60 гПа на 100 км, а иногда до 20 гПа на 20 км.

Наибольшая скорость ветра в движущемся тайфуне наблюдается в правых (по отношению к направлению перемещения) квадрантах, где скорость в системе самого ТЦ складывается со скоростью фонового потока. Максимум скорости ветра наблюдается на высоте около 1 км, скорость ветра на уровне флюгера (10 м) составляет около 70% от этой величины.

Кинетическая энергия ТЦ, по ряду независимо произведенных оценок (Добрышман, 1994; Голицын, 1997) имеет порядок 1018 Дж (атомный бомбовый эквивалент принят 8.4 1014 Дж).

Говоря о движении тайфунов (как и всех ТЦ вообще), следует сказать, что оно в большой степени определяется тремя основными факторами: взаимодействием между фоновым потоком и самим вихрем, изменением параметра Кориолиса с широтой (т.н. «эффект Россби») и трением о подстилающую поверхность. Имеет место тенденция к перемещению ТЦ в области с более теплой поверхностью воды. ТЦ обоих полушарий обычно смещаются из более низких в более высокие широты. В отдельных (довольно редких) случаях, скажем, при возникновении петлеобразных траекторий, тайфун или ураган в течение определенного периода может двигаться и по направлению к экватору.

Тропические циклоны проходят в своем развитии (эволюции) несколько стадий.

Стадия формирования – обычно циклон в этой стадии называют тропической депрессией (TD, vm < 17 м/с). Ее начало отождествляется с образованием системы, обладающей на приземной карте одной или несколькими замкнутыми изобарами; давление на уровне моря может упасть до 1000 гПа.

Стадия молодого циклона – это соответствует в принятой терминологии понятию «тропический шторм» (TS, 17 м/с £ vm £ 24 м/с) или «сильный тропический шторм» (STS, 25 м/с £ vm £ 32 м/с). Эта стадия может продолжаться несколько суток, но иногда носит и «взрывной» характер, когда за 12 ч возникает хорошо выраженный вихрь с глазом бури. Разрозненные очаги облаков и осадков образуют систему узких полос дождя, сходящихся у центра, но охватывающих еще небольшую область. ТЦ прослеживается до изобарической поверхности 500 гПа, иногда 300 гПа.

Стадия зрелого циклона, т.е., собственно, тайфуна (TY) или урагана (Hr). Теперь vm ³ 33 м/с, давление в центре ТЦ сначала достигает минимального значения, а затем начинает увеличиваться. Система циркуляции в этой стадии, которая может существовать неделю, расширяется по площади. Радиус циклона достигает максимальных размеров, характерных для той или иной акватории; ТЦ прослеживается вплоть до тропопаузы (~ 100 гПа). В западной части Тихого океана тайфун с vm > 50 - 65 м/с (разные значения в разных прогностических центрах) иногда называют «супертайфуном» (STY). Число таких супертайфунов за всю историю наблюдений весьма невелико.

Стадия затухания, или трансформации в полярно-фронтовой циклон. Заполнение ТЦ происходит при выходе на сушу, в зону низких температур поверхности океана или при больших вертикальных сдвигах ветра. Все эти факторы связаны с уменьшением притока энергии (тепла и влаги) с поверхности, а при выходе на сушу – и с увеличением трения о подстилающую поверхность. По мере продвижения по обратной ветви траектории к северо-востоку (в Северном полушарии) ТЦ либо регенерируют на полярном фронте и, постепенно утрачивая специфические «тропические» черты, превращаются в циклоны умеренных широт (с давлением в центре 950 - 960, а иногда до 1000 гПа), либо, как только что упоминалось, заполняются. Отметим, что хотя скорость ветра при трансформации ТЦ ослабевает, осадки могут даже усилиться, оставаясь, как правило, значительно более сильными, чем во внетропических циклонах, а охватываемая ими зона значительно расширяется.

В прежние времена (XVI - XIX вв.) ТЦ на испанских островах Карибского моря называли по имени того святого, с чьим днем, по католическому календарю, совпадало их опустошительное нашествие. Так, известен громадными разрушениями ураган Санта-Ана на о. Пуэрто-Рико 26 июля 1825 г. Официального или всеобщего характера это правило, однако, не приобрело. Иногда ТЦ получали имя той местности, в которой они особенно запомнились. История знает ураган Саванна-ла-Мар, обрушившийся на одноименный поселок о. Ямайки в 1780 г. Надолго останутся в памяти японцев печально знаменитый тайфун Мурото, вышедший на мыс Мурото 21 сентября 1934 г., и тайфун залива Исеноуми, 26 - 27 сентября 1959 г., разрушивший г. Нагою и унесший 5 тыс. человеческих жизней.

С 1953 г. в Бюро погоды США на каждый сезон ураганов стали составлять список женских имен в алфавитном порядке, которыми и нарекали вновь возникающие тропические циклоны Атлантического океана, когда они достигали определенной стадии развития (TS). При этом список составлялся заранее, как правило, на несколько лет вперед. Вскоре алфавитные списки женских имен были введены американцами и для тихоокеанских тайфунов (Ситников, 1975).

С 1978 г. в списках тайфунов (а с 1979 г. – ураганов) женские имена чередуются с мужскими (алфавитный порядок сохраняется). Имя первого тайфуна каждого сезона начинается с буквы английского алфавита, следующей за той, с которой начиналось имя последнего ТЦ предыдущего сезона. (В Атлантике список ураганов каждый год начинается с имени на первую букву алфавита – А).

К этому остается добавить, что японцы, как и много лет назад, снабжают очередной тайфун комбинацией из четырех цифр, где первые две цифры означают год, а вторые две – его порядковый номер в данном году. Так, первый тайфун, скажем, 1999 г., идентифицируется как 9901. На Филиппинах, наряду с официальным «американским» именем, в сводках национальной гидрометслужбы PAGASA можно встретить и свои, локальные наименования: например, Лузинг (Lusing), Трининг (Trining) и др.

С 2000 г. порядок присвоения имен тайфунам изменился. Комитет по тайфунам (международный орган Всемирной метеорологической организации), членами которого являются (в порядке алфавита на английском языке): Камбоджа, Китай, Северная Корея, Гонгконг, Япония, Лаос, Макау, Малайзия, Микронезия, Филиппины, Южная Корея, Тайланд, США и Вьетнам, составил пять списков имен тайфунов. Список введен в действие с 1 января 2000. Последний тропический циклон 2000 г. носил имя Soulik (наименование представлено Микронезией), а первый 2001 г. – имя Cimaron (наименование представлено Филиппинами).

 

Информация о параметрах тропических циклонов северо-западной части Тихого океана поступает от Японского метеорологического агентства (JMA) и от Объединенного центра предупреждения о тайфунах США (JCWT, о. Гуам) в виде синоптических карт, предупреждений о тайфунах, штормовых оповещений, а также распространяется по сети Internet и на технических носителях в виде многолетних и годовых наборов данных.

Технологии определения параметров тайфунов в Японском метеорологическом агентстве и в Объединенном центре предупреждения о тайфунах США (о. Гуам) различны. Это приводит к тому, что передаваемая информация о тайфунах существенно отличается. Например, давление в центре тайфуна Herb (9609) по данным Японского метеорологического агентства, Центрального бюро погоды на Тайване и Объединенного центра предупреждения о тайфунах США (о. Гуам) отличались на 20-35 гПа в период максимального развития циклона.

Тропический циклон Herb (9609) по данным Объединенного центра предупреждения о тайфунах находился в стадии супертайфуна (скорость ветра более 130 узлов). В то же время, последний супертайфун, зарегистрированный по данным Японского метеорологического агентства был только в 1979 г. – Tip (7920). По данным же Объединенного центра число тайфунов со скорость ветра более 65 м/с ежегодно отмечается в количестве 4-6. В 1999 г, видимо в самом аномальном году по интенсивности тропического циклогенеза (по классификации Японского метеорологического агентства только четыре циклона достигли стадии тайфуна), по данным Объединенного центра предупреждения о тайфунах США также отмечен один супертайфун.

Оценка положения центра определяется достаточно точно (несколько десятков км) при выходе центра на сушу. До 30-40 км определение точности принято считать отличным. Хуже всего местоположение определяется при нахождении ТЦ на ранних стадиях развития. Принято считать, что давление в центре определяется с точность до 5 гПа, максимальный ветер до 5 м/с.

В табл. 6 приведены данные о количестве тропических циклонов, достигших той или иной стадии развития, за период 1957-1999 гг. в северо-западной части Тихого океана (данные 1957 г. и данные о тропических депрессиях – неполные).

Таблица 6. Количество тропических циклонов северо-западной части Тихого океана по степени интенсивности (давление) за период 1957-1999 гг. (по данным JMA)

Р (гПа)

Месяц

Год

 

I

II

III

IY

Y

YI

YII

YIII

IX

X

XI

XII

 

>1001

1

1

3

1

1

3

10

5

6

7

3

0

41

1000-991

6

1

4

5

10

13

27

41

25

26

30

16

204

990-981

3

0

7

6

5

22

27

49

31

18

13

5

186

980-971

3

1

1

3

9

12

38

41

31

21

12

8

180

970-961

3

1

1

3

5

9

19

26

30

18

2

3

120

960-951

0

0

1

3

3

7

9

25

18

20

6

4

96

950-941

1

1

0

0

3

5

7

19

19

14

8

9

86

940-931

3

0

3

3

2

3

10

10

16

18

14

2

84

930-921

1

0

0

4

2

3

12

9

12

9

13

4

69

920-911

0

0

0

2

2

0

9

11

10

8

6

3

51

910-901

0

0

0

0

1

1

6

3

11

7

10

1

40

900-891

0

0

0

0

0

0

5

3

9

8

6

1

32

890-881

0

0

0

0

1

0

0

1

2

2

1

0

7

880-871

0

0

1

0

0

1

0

0

1

3

1

0

7

£ 870

0

0

0

0

0

0

0

0

0

1

0

0

1

Итого

21

5

21

30

44

79

179

243

221

180

125

56

1204

Рср.

975

980

977

967

969

974

967

969

959

957

957

966

 

По данным Японского метеорологического агентства 85.4% тропических циклонов зарождается в сезон тайфунов (июнь-ноябрь). Более половины тропических циклонов северо-западной части Тихого океана (51.0%) достигают давления в центре 970 гПа и глубже, около трети (32.4%) - 950 гПа и глубже (расчет без учета депрессий). Только 4.04% всех тайфунов достигают глубины 900 гПа и менее. По данным Объединенного центра предупреждения о тайфунах США эти же показатели соответственно равны - 89.3%, 52.5%, 35.1% и 9.2%.

За период 1963-1999 гг. по данным JMA достигло стадии 30 узлов и более 996 тропических циклонов, по данным JWTC – 1070. По данным Японского метеорологического агентства - 61.7% тропических циклонов достигают максимальной силы ветра 30 м/с (60 узлов) и более, около 17.1% - 50 м/с (100 узлов) и более. Только 1.3% всех тайфунов достигают интенсивности супертайфуна (65 м/с или 130 узлов). По данным Объединенного центра предупреждения о тайфунах США эти же показатели соответственно равны - 64.3%, 29.5% и 13.2%.

Наиболее глубоким тайфуном по данным JMA с 1957 г. по 2001 г. был тропический циклон 7920, достигший 12 октября 1979 г. глубины 870 гПа при ветре 69 м/с (135 узлов), наиболее мощным - тропический циклон 6228, максимальная скорость ветра в котором 13 ноября 1962 г. составляла 79 м/с (155 узлов) при давлении 900 гПа.

По данным же JWTC наиболее мощным был тропический циклон 6118, который 12 сентября 1961 г. достиг максимального ветра 185 узлов (94 м/с), что соответствует давлению в циклоне 850 гПа. Этот же циклон по данным JMA имел глубину 890 гПа (информация о ветре отсутствует). Интересно отметить, что по данным JWTC в супертайфуне Tip (7920) 12 октября 1970 г. максимальная скорость ветра была 165 узлов (84 м/с).

Количество циклонов, достигших стадии супертайфуна (ветер 130 узлов и более), за весь период наблюдений (1956-1999) по данным JMA – 19. Последним супертайфуном был тропический циклон 7920, последним тропическим циклоном, достигшим глубины 890 гПа и менее, был тропический циклон 8422 (875 гПа и максимальный ветер 61 м/с или 120 узлов). В то же время, по данным Объединенного центра прогноза тайфунов о. Гуам отмечен тренд на увеличение супертайфунов с середины 70-х годов (до 7 циклонов в 1991 г.). За тот же период было 152 супертайфуна.

Наибольшие размеры тропические циклоны имеют в октябре, наименьшие – в марте. Средний радиус зоны сильных ветров в эти месяцы, соответственно, почти 300 морских миль (556 км) и 145 (около 270 км).

Почти 2/3 (63.4%) всех тропических циклонов к югу от 44 с.ш., находясь еще в стадии тропического шторма или тайфуна, имеют зону сильных ветров более 200 морских миль (370 км). Более 14% (115 из 808 ТЦ за период с 1969 по 1999 гг.) имеют размеры в моменты максимального своего развития, близкие к размерам самых глубоких внетропических циклонов - зона сильных ветров (более 15 м/с) у таких ТЦ была больше 400 морских миль (более 740 км), у 5.8% зона сильных ветров превышает 500 морских миль.

Половина этих циклонов возникла в последние 10 лет. Наибольшее число таких размеров циклонов было в 1972 г. и 1990 г. - четыре, в 1997 г - пять. У 16 тайфунов зона сильных ветров превышала 500 морских миль (более 925 км). Самым крупным по размерам радиуса зоны сильных ветров был тропический циклон 8928, который 29 октября 1989 г., находясь на 40 с.ш. 158 в.д. еще в стадии тайфуна, при глубине 960 гПа и максимальной скорости ветра 36 м/с (70 узлов) имел радиус зоны сильных ветров 800 морских миль или 1482 км, радиус зоны ураганных ветров (более 25 м/с или более 50 узлов) составлял всего 200 морских миль.

В октябре-ноябре максимален размер зоны ураганных ветров – 110 морских миль (более 200 км). Минимальные размеры зон ураганных ветров в тропических циклонах в январе-феврале - 64-68 морских миль (около 120 км).

Наибольших размеров радиусы зон ураганных ветров зафиксированы в тропическом циклоне 8422 при глубине 880 гПа и максимальном ветре 61 м/с (120 узлов) и в тропическом циклоне 8305 при глубине ТЦ 920 гПа и максимальной скорости ветра 51 м/с (100 узлов) – в обоих циклонах радиусы равны 250 морских миль (463 км), а также в тропическом циклоне 9199 - 280 морских миль (518 км). Важно заметить, что тропический циклон MIREILLE (9119) таких размеров достиг в пределах Японского моря (43.5 с.ш. и 141.7 в.д. – западной побережье о-во Хоккайдо), находясь в стадии тайфуна. При этом радиус сильных ветров был всего 350 морских миль (648 км). Максимальной интенсивности (925 гПа) тайфун MIREILLE (9119) достиг 24 сентября; скорость ветра вблизи центра в этот момент составила 50 м/с. Его интенсивность оставалась без изменения до точки поворота, которая наблюдалась 26 сентября на 24-26 с.ш.

 

Опасные факторы на море. Наиболее опасными для людей и имущества факторами тропического циклона представляются ураганные ветры, ураганные волны, штормовые нагоны и морские волны.

Транспортирующая и разрушительная сила ураганов, в основном, создается ветром огромной скорости, ветром, несущим большие массы воды, грязи и песка. Совместное действие ветра и воды — вот в чем заключается сила урагана.

Подсчитано, что ветер со скоростью 40 м/с оказывает давление 100 кГ/м2. Поверхность площадью в несколько квадратных метров будет испытывать давление в тысячи килограммов, а во время сильных ураганов скорость отдельных порывов возрастает до еще больших цифр, порядка 120 м/с с давлением в 900 кГ/м2. Такого страшного давления ничто не может перенести, и разрушаются все здания, даже каменные.

Любой ураган, независимо от того, где он происходит, обладает страшной разрушительной силой. Как пример можно взять ураган 11 января 1866 г. в Шербуре, на побережье Франции. В порту находилось тридцать два судна, двадцать два из них были разбиты бурей у стен города. Громадные глыбы весом в 2—3 т, лежавшие у основания мола, были подняты на высоту более 8 м и выброшены на поверхность мола. Волны, ударявшие о мол, давали каскады брызг высотой 50—60 м. Бешеный ветер подхватывал их и горизонтальным покровом уносил далеко в город.

Штормовые, ураганные волны — это поразительное, иногда потрясающее явление, нередко сопровождающее переход урагана с моря на сушу. Вступая на мелководье, ураган оказывает на воду чрезвычайно сильное давление, буквально выжимая ее перед собой. Образуется громадный, длинный водяной вал (волна), движущийся с большей скоростью перед ураганом и с меньшей по его бокам. Передняя волна всегда идет вместе с ураганом, сопровождаясь страшным ветром, ливнями и грозами. Боковые волны уходят в сторону от урагана и иногда обрушиваются на берег при полном затишье. Такие волны в Японии имеют особое название— «унэре». Они предупреждают о близости урагана.

Сильные ураганы образуют громадные волны еще в открытом океане. По расчетам В.В. Шулейкина (1960), ураган со скоростью ветра 60 м/с образует волну высотой 12.5—13 м и длиной 230 м. При приближении такой колоссальной волны к берегу сначала уровень воды поднимается медленно, постепенно. В определенный момент происходит скачок — уровень прыгает вверх, и вода обрушивается на сушу. Этот скачок вызывается волной, идущей перед центром урагана и достигающей наибольшей высоты (Понявин, 1965).

Размеры ураганной волны весьма различны, от нескольких десятков сантиметров до 12—14 м. Они зависят от силы урагана, от того, какая часть урагана проходит в данном месте — центр или периферия. Большое значение имеют географические условия.

Наибольших размеров штормовые волны достигают вдоль западного побережья Тихого океана. Рекордное количество жертв (300 000 человек) унес тайфун 1881 г. на побережье Северного Вьетнама, в районе Хайфона. Наибольшей высоты (14 м) волна достигала 30 июня 1905 г. на Маршалловых островах (Visher, 1925, р. 64).

Ураганные волны на побережье Китая нередко достигают высоты 2—3 м, а в отдельных случаях и значительно большей. Степень их разрушительной деятельности зависит от характера берега. Особенно велика она на низменных, густонаселенных участках. Так, например, в низменной дельте р. Хан, у города Шаньтоу, 2—3 августа 1922 г. ураган сопровождался сравнительно небольшим общим повышением уровня — 2.5 м, но отдельные волны достигали 7.5 м. Вода перекрыла всю дельту, поднявшись высоко по реке. Наводнение увеличилось еще больше благодаря страшному ливню. Ветер достигал ужасающей силы: в течение 2 ч его скорость превышала 150 км/ч. Разрушения были громадны, погибло около 60 000 человек (Visher, 1925).

Рис. 2.1.16. Ураганная волна высотой 6 м, надвигающаяся на берег в Новых Гебридах. (Rue, 1940, piс. IX).

Ураганная волна, стеной надвигающаяся на берег Ново-Гебридских островов, была высотой в несколько метров (рис. 2.1.16).

Ураганные (ветровые) волны, вызываемые японскими тайфунами, и их разрушительная деятельность описаны Окута Минору (1963). Наиболее ужасным из них был тайфун Исэван (Вера, № 15) 26—27 сентября 1959 г. Высота ураганной волны достигла 5.2 м; она перекрыла дамбу высотой 4.8 м в районе гавани Нагойя и вызвала гибель 5500 человек (Arakawa, 1960).

Интересна повторяемость ураганных волн. За 50 лет (с 1900 г.) в заливе Токио их было пять, в заливе Осака — девять. В заливе Суруга, недалеко от Токио, число волн за 35 лет было восемь. Наибольшее число волн было в заливе Тояма: за 30 лет — 28 гигантских волн.

Японские ученые, подчеркивая громадные размеры ураганных волн, называют их «цунами», так же как и волны, возникающие во время землетрясений.

Штормовой нагон. Термином «штормовой нагон» обозначают подъем морских вод выше среднего уровня океана, который отмечается при ориентированном к берегу ветре (обычно при приближении циклонов). Собственно нагон происходит на участке шириной 15— 30 км. Период высокой воды может длиться примерно от 6 часов до нескольких дней в районах с плохим стоком. При этом может происходить засоление почв, и в результате они становятся непригодными для сельскохозяйственного использования.

В открытом море низкое атмосферное давление в центре шторма вызывает подъем воды выше уровня окружающей поверхности. При приближении шторма к побережью ветер может нагнать и без того высокую воду к берегу в зависимости от конфигурации последнего. Если это совпадает с высоким лунным приливом, подъем уровня моря над его обычным уровнем может достигать 7 метров и более, что приводит к быстрому затоплению низких участков побережья.

Имея в центре низкие значения давления, циклоны обеспечивают также изменения статического уровня поверхности океана. Стоит напомнить, что понижение давления на 1/10 стандартной атмосферы (100 гПа) обеспечивает подъем уровня на 1 м.

Штормовой нагон зависит от целого ряда факторов, таких как рельеф дна, конфигурация береговой линии, а также размер, интенсивность, направление и скорость движения ТЦ. Наиболее высокие нагоны бывают в заливах с широким устьем и резким уменьшением его глубины или ширины. Высота нагона при таких условиях может достигать 2 - 5,5 м, а его продолжительность – от нескольких десятков минут до нескольких суток. Значительные штормовые нагоны, вызванные тайфунами, бывают во многих местах побережья Японии. Так, во время катастрофического нагона высотой в 3,4 м, вызванного тайфуном Вера (1959 г.), затопило город Нагоя, что привело к гибели около 5 тыс. человек (Григоркина и Фукс, 1986).

Наличие низин, выходящих к мелководному побережью, при их затоплении приводило в истории наблюдений за ТЦ и к более тяжелым последствиям. Знаменитый Галвестонский ураган (штат Техас, США) 1900 г. вызвал гибель более 6 тыс. человек. Ураган Камилла 1969 г. вызвал в устье р. Миссисипи штормовую волну высотой более 7 м, погибло более 100 чел. и был причинен ущерб в 1 млрд долларов.

Штормовые нагоны, несомненно, представляют наиболее разрушительный фактор. 12 ноября 1970 г. тропический циклон в северной части Бенгальского залива вызвал 6-метровый подъем уровня моря, совпавший с высоким приливом. В результате этого урагана и возникшего наводнения погибло примерно 300 тыс. человек, и одни лишь потери урожая оцениваются в 63 млн. долл., но эти цифры не отражают всех последствий урагана. Погибло примерно 60% населения, занятого в прибрежной зоне ловом рыбы, уничтожено 65% рыболовецких судов в прибрежном районе, что существенно сказалось на снабжении белковыми продуктами всего района (Frank, Husain, 1971).

В сентябре 1954 г. вследствие сильного штормового нагона, совпадающего с полной водой астрономического прилива, с 23 ч 13 сентября до 19 ч 14 сентября уровень воды в бухте Золотой Рог поднялся на 1 м (Климат Владивостока, 1978). Ущерб не зафиксирован.

Дожди. Интенсивность осадков в тайфунах может превышать 1000 мм/сут. На Дальнем Востоке России при выходе тайфуна иногда выпадает дождей до 200 - 350 мм/сут. Осадки распределяются крайне неравномерно как по пространству, так и по времени. В среднем интенсивность осадков в развитом тайфуне в области радиусом до 200 км составляет 80 - 100 мм/сут.

Иногда во время тропического циклона может выпасть до 2500 мм осадков или ни капли, но довольно обычна величина 500 мм. Результатом выпадения большого количества осадков являются наводнения, особенно когда ураган пересекает горную местность. Так было, например, во время урагана «Камилла» в 1969 г., когда в течение 5 часов на уже насыщенную влагой почву выпало 790 мм осадков (U. S. Department of Agriculture, 1970).

Ветер. Максимальная скорость ветра в тропическом циклоне Vmax при развитии над океанами может достигать свыше 100 м/с в Атлантике, и около 90 м/с в Тихом океане.

Для быстрого расчета максимальной приводной скорости ветра (vm, м/с) по известному давлению в центре тайфуна (po, гПа) используются формулы:

vmax = 0,125 (1040 - po)4/3 (Похил, 1985) или

vmax = 3,45 (1010 - po)0.644 (Atkinson and Holliday, 1977) или

vmax = 3,40 (1010 - po)0.648 (Dvorak, 1984) или

vmax = 4,89 (1010 - po)0.577 (Fujita, 1971)

Во многих тайфунах ветер почти симметричен относительно оси вращения, по крайней мере, на первой стадии развития и по крайней мере в радиусе 300-400 км.

В настоящее время в Японском метеорологическом агентстве прогноз ветра в тайфуне на различные сроки заблаговременности (рис. 2.1.17).

Рис. 2.1.17. Прогноз ветра на 3.07 12 СГВ тайфуна Утор от Японского метеорологического агентства. (Обозначения: большое перо у стрелки обозначает 5 м/с, маленькое – 2.4 м/с, треугольник – 25 м/с, стрелка указывает направление откуда дует ветер.). Прогноз дан с суточной заблаговременностью.

 

 

 

Рис. 2.1.18. Средний и максимальный риск (х10-2) встречи сильных ветров (>15 м/с) в сентябре (Тунеголовец, 2001).

Вероятность оказаться под воздействием сильных (более 15 м/с) или ураганных (более 25 м/с) ветров тайфунного происхождения зависит от времени года и местонахождения судна (Тунеголовец, 2001).

Наибольший риск (повторяемость) характерен летних месяцев при плавании и работах в северной части Филиппинского моря (рис. 2.1.18). Изменчивость количества тайфунов от года к году, как было показано, весьма существенна. Максимальное количество тайфунов было отмечено в 1967 г. (44), минимальное – в 1998 (21). По этой причине вероятность встречи сильных или ураганных ветров тайфунного происхождения оказывается также крайне изменчива.

Максимально возможная вероятность (риск) оказаться под воздействием сильных или ураганных ветров тайфунного происхождения в 2-3 раза превышает средние значения. В августе-октябре в некоторых районах северной части Филиппинского моря до 50% времени работ в течение месяца может оказаться в условиях сильного ветра и до 30% - в условиях ураганных ветров (Тунеголовец, 2001).

Волнение. Действие ветровых волн и зыби может распространяться на расстояние до 350 км от центра циклона. Совместное воздействие ветра, волн и волновых течений может вызывать размыв берега, в результате чего уничтожаются пляжи и сельскохозяйственные земли, постройки и города. Ущерб не сводится только к этому — и после затопления, при спаде воды, может происходить проседание земли и зданий.

О волнении в зоне урагана до сих пор имеются наиболее редкие и разноречивые сведения. Попутные судовые наблюдения являются почти уникальными, так как суда стараются по возможности избежать ураган, разойтись с ним. Даже в случаях встречи судна с ураганом измерения высоты волн производится очень редко и неточно.

Вышедший 16 сентября в 21 мск. 1959 г. на акваторию Японского моря через Корейский пролив тайфун очень медленно, в течение 36 часов, смешался в северо-восточном направлении, имея практически все время давление в центре 975 мб. Только в 15 мск. 18 сентября подойдя к Сангарскому проливу, тайфун начал заполняться. Наибольшая из расчетных средних высот волн составила 7.4м, что дает возможность говорить о максимально возможной высоте волны в 21м.

Одна из крупных аварий, с большим количеством человеческих жертв, произошла в сентябре 1954 года с пассажирским судном «Тойя–мару» (4337 рег.т), курсировавшим через Сангарский пролив на линии Аомори-Хакодате. Капитан судна, дождавшись, когда пройдет ураган, поспешил в рейс при слабом ветре и ясном закате солнца. Но впоследствии оказалось, что это спокойствие было обманчивым – судно находилось в глазе тайфуна. «Тойя–мару» и 1719 человек погибли.

Подробные сведения о характеристиках тайфунов, выходящих на акваторию Японского моря, приводятся в статье Воронина («Расчет характеристик ветра и волн в морях с тропическими циклонами», тр. ГОИН, 1988). Один из наиболее мощных тайфунов “Phyllys” наблюдался в Японском море 12 сентября 1976 г. Рассчитанная в нем максимальная средняя высота волн составила 8,4 м, предельно возможная в этом шторме - 25 м.

Ветровое волнение, вызываемое тайфунами, имеет самый широкий спектр: от коротких гравитационных волн, вызванных местным ветровым режимом (рябь высотой в несколько мм), до волн длиной в несколько десятков метров. Режим волнения зависит от скорости ветра и допустимой степени разгона волн. Для состояния атмосферы в области тайфуна характерны быстрые и резкие изменения скорости ветра, что приводит к сложным интерферирующим системам ветрового волнения и зыби. Высота ветровых волн в глубоких тайфунах может достигать 10 - 15 м, а максимальные значения превышают 20 м (Григоркина и Фукс, 1986; Global guide ... , 1993).

Один из вариантов диагностики состояния океана в штормовых зонах возможен по определенным облачным структурам, обнаруживаемым на основе спутниковой информации (Похил, 1983). Получено (Похил, 1985), что при малой скорости перемещения центра циклона (10 - 20 км/ч) в открытом океане зона максимального волнения близка к центру циклона и находится на расстоянии 50 - 150 км от него. При увеличении скорости продвижения ТЦ зона штормового волнения отстает от его центра и смещается в правую тыловую часть относительно направления движения ТЦ. При регенерации ТЦ на атмосферном фронте скорость его перемещения увеличивается до 40 км/ч и более. Ускорение перемещения ТЦ происходит обычно на 35 - 38° с.ш. При выходе ТЦ на побережье или острова зона максимального волнения отстает от центра циклона и сдвигается в его тыловую часть.

По мере того как ветровые волны распространяются в океанические области, далекие от места их зарождения, т.е. от области штормового волнения, они постепенно превращаются в зыбь (swell). Волны зыби – это гравитационные волны, обладающие скоростью 40 - 80 км/ч, не связанной со скоростью преобладающих ветров в достигнутой ими зоне океана и значительно превышающей скорость перемещения самого тайфуна. Так, зыбь, которая распространяется от тайфуна, приближающегося к Японии, обычно опережает сам тайфун на 700 - 1500 км и выходит на побережье на несколько часов раньше него. Поэтому крупная зыбь иногда является как бы предвестником тайфуна и может служить признаком его существования в удаленном от наблюдения районе.

Волны зыби обычно на протяжении сотен миль довольно слабо затухают по высоте, которая может доходить до 3 - 6 м, а иногда и до 10 - 15 м. При этом известны случаи, когда зыбь отмечалась на еще больших (чем приведено выше) расстояниях от центра тайфуна, вплоть до 2000 -3000 км. Периоды зыби во время сильных тайфунов могут доходить до 15 с. Высокая зыбь от тайфунов на отдельных участках побережья, обращенных к открытому морю, создает сильнейший прибой, разрушающий берега и гидротехнические сооружения. На защиту берегов от таких волн государствами северо-западной части Тихого океана тратятся огромные средства (Григоркина и Фукс, 1986).

Еще в 1920 г. Клайн (по В.М. Лившицу, 1969) высказал мысль, что высочайшие волны урагана и зыбь возникают в правой тыловой четверти урагана и лишь затем проходят через небольшие волны передовых частей урагана, сохраняя направление движения времени образования.

Наблюдения показывают, что направление зыби отклоняется вправо от направления ветра. Наибольшее среднее отклонение в левой тыловой четверти, наименьшее в правой тыловой. Во фронтальных четвертях отклонения промежуточные между тыловыми. Это относится к случаю движущегося шторма. Стационарный шторм обладает почти симметричной картиной ветра и волн.

Аракава (1954) нашел, что в ограниченной районе правой тыловой четверти направление зыби отклоняется не вправо, а влево от направления ветра и что именно здесь путем взаимодействия зыби и ветровых волн возникают так называемые пирамидальные волны.

Так как при движении шторма усиливается ветер в правой его половине и увеличивается время его действия на волны, а также длина пути, на котором образовавшиеся волны продолжают получать энергию от ветра (разгон), картина волнения в урагане становится очень несимметричной. Умение правильно учесть этот факт может оказать неоценимую помощь судну, попавшему в ураган. По степени опасности обычно на первом месте стоит правая тыловая четверть урагана, затем правая фронтальная, левая фронтальная и левая тыловая. Эта схема не относится к моментам поворота или быстрого изменения скорости.

На рис. 2.1.19 приведены прогностические и фактические данные о волнении в тайфуне Утор (июль 2001 г.) от Японского метеорологического агентства. Скорость перемещения тропического циклона составляла 15-20 узлов. Отчетливо видна несимметричность распределения волнения в правой относительно движения части тайфуна. Максимальное волнение в циклоне превышает 8 м. При этом тропический циклон имел глубину 980 гПа и максимальную скорость ветра 50 узлов. Размеры зоны сильных ветров достигали 450 морских миль, а ураганных ветров – 50 миль.

 

Прогноз волнения на 3.07.01 00 СГВ тайфуна Утор

 

Фактическое волнение 3.07.01 00 СГВ в тайфуне Утор

 

Рис. 2.1.19. Прогностические и фактические данные о волнении в тайфуне Утор от Японского метеорологического агентства.

К приведенным данным о волнении в тропическом циклоне (ураган, тайфун) необходимо добавить следующее (Лившиц, 1969): «Уменьшение скорости ветра в глазе циклона не всегда означает уменьшение волнения. Состояние поверхности моря здесь меньше связано с характером ветра, а больше зависит от скорости движения самого циклона и волн. Наибольшее волнение возникает при совпадении или приближении скорости циклона и скорости волн. В циклоне малой скорости или стационарном волнении меньше, но в глазе такое же, как и в области сильного ветра. При очень большой скорости тайфуна или урагана волнение в его «глазе» отбудет сравнительно невелико».

Согласно расчетам академика В.В. Шулейкина (1960, 1975) в Атлантическом океане при скорости ветра, возрастающей в течение 5 часов от 0 до 60м/с волны 5%-ной обеспеченности имеют высоту - 12,6 м, длину - 230 м, период - 12,1 сек, фазовую скорость 19 м/сек. Аналогичный расчет проведен для волн тайфуна в Южно-Китайском море (Тайванский пролив): при глубине 60 м и максимальной скорости ветра 40 м/с за 35 ч развиваются волны высотой 9 м, длиной 160 м, периодом 10 сек. В.В. Шулейкин произвел также расчет затухающего волнения под действием встречного ветра. По расчету, за 4 часа при встречном ветре, ослабевающем от 60 до 10 м/о, высота волн уменьшается с 13 до 2 м.

Это указывает на возможность полного гашения зыби встречным ветром. Такое явление действительно было замечено судном "Ван Вервик" в Индийском океане. При прохождении судна по периферии урагана наблюдалось внезапное временное прекращение зыби.

Признаки приближения ТЦ можно наблюдать на значительном удалении от него. Так, например, зыбь, идущую не от того направления, от которого дует или дул ранее ветер, при глубоком ТЦ можно обнаружить на расстоянии до 1000 миль от центра, а на расстоянии 400-500 миль она ощущается при любых тропических циклонах. Ветры, связанные с ТЦ, распространяются на расстояние до 700 миль от его центра. Иногда отмечаются необычной окраски восходы и заходы Солнца, при которых небо принимает огненный или медно-красный цвет с разнообразными оттенками, а также необычная флуоресценция моря и ореолы вокруг Солнца и Луны.

Важным признаком приближающегося ТЦ на расстояниях до 1500 миль от центра циклона может служить появление перистых облаков в виде тонких прозрачных полос, перьев или хлопьев, которые хорошо видны при восходе и заходе Солнца. Когда эти облака кажутся сходящимися в одной точке за горизонтом, то можно считать, что на расстоянии около 500 миль от судна в направлении сходимости облаков расположен центр ТЦ. На расстоянии 300 миль от центра ТЦ полосы перистых облаков обычно вытянуты в направлении движения ТЦ. Однако на расстояниях, превышающих 250 миль от центра, признаки приближения ТЦ нельзя считать безусловными. Более надежные признаки приближающегося ТЦ можно установить с расстояния около 200 миль. Сила ветра составляет 6-7 баллов; появляются разорванно-кучевые облака; наблюдается значительная зыбь, направленная от центра ТЦ. Движение мелких одиночных кучевых облаков обычно надежно указывает на направление движения центра ТЦ. Если стать навстречу движению кучевых облаков, то в северном полушарии центр ТЦ будет расположен справа, а в южном полушарии - слева. Так как зыбь распространяется по радиусам от центра ТЦ, то по направлению распространения зыби можно судить о положении центра, а по изменению этого направления составить представление о направлении его движения.

С приближением ТЦ происходит уплотнение облачности, усиление ветра и зыби, быстрое падение температуры воздуха. На расстояниях 100-150 миль от центра наблюдается заметное падение атмосферного давления, кучевые облака заволакивают все небо, начинаются сильные ливневые дожди. На расстояниях менее 100 миль от центра ТЦ происходит резкое падение атмосферного давления. В 10-60 милях падение давления может достигать 10-20 гПа (мб) в час. Ветер продолжает усиливаться, достигая 12 баллов в 30-35 милях от центра. Наиболее сильное волнение образуется: в северном полушарии - в правой задней четверти ТЦ, в южном полушарии - в левой задней четверти.

После прохождения центра ТЦ наблюдаются те же метеорологические явления только в обратной последовательности и с большей скоростью их смены. Для нахождения центра ТЦ можно использовать штормовую картушку (рис. 2.1.20).

 

Рис. 2.1.20. Штормовая картушка для северного полушария (справа) и расхождение судна с тропическим циклоном (слева).

Обнаружив первые признаки приближающегося ТЦ, нужно считать себя находящимися между внешней и второй снаружи окружностями 1 и 2, а при падении барометра от 1 до 2 гПа в час - между окружностями 2 и 3. Считая местом судна то место на картушке, где направление вектора ветра совпадает с истинным, определяют направление на центр циклона как на центр картушки. Для расхождения с ТЦ прежде всего необходимо определить, в какой его половине находится судно. Если ветер меняется по часовой стрелке, то судно находится справа от пути ТЦ, если против, - слева (рис. 42).

В северном полушарии, если судно находится в правой половине ТЦ и не может пересечь его движение заблаговременно, следует привести ветер на носовые курсовые углы правого борта и идти этим курсом до тех пор, пока давление не начнет повышаться. Если судно находится в левой половине или на пути ТЦ, следует уйти от центра ТЦ курсом, перпендикулярным его движению, приведя ветер по правому борту, и идти так, пока давление не начнет повышаться.

В южном полушарии в левой половине ТЦ следует привести ветер на носовые курсовые углы левого борта и идти так, пока не начнет повышаться давление. В правой половине или на пути движения ТЦ следует привести ветер на траверз левого борта, а если судно не может удерживаться на таком курсе, то на кормовые углы левого борта, и идти этим курсом, пока ТЦ не удалится.

Моряки различают безопасный для плавания полукруг, располагающийся к экватору от траектории циклона (при движении его на запад), и опасный полукруг, в котором ветер несет судно к передней части циклона и в котором направление ветра и движение циклона совпадают. Существуют подробные инструкции для моряков относительно того, как распознать приближение тропического циклона и что нужно сделать, чтобы избежать попадания в опасный полукруг и в центр циклона, если судно находится вблизи него (см.: Meteorology for Manners. Met. Office 593, а также лоции).

 

 

Вопросы для самопроверки

1. Какие условия необходимы для образования воздушной массы? Назовите географические типы воздушных масс.

2. Как меняются свойства морского воздуха тропических и умеренных широт при движении из очага формирования на материки?

3. Какие облачные системы типичны для холодных и теплых воздушных масс?

4. Чем объяснить «зарядную» деятельность атмосферы в Баренцевом море? j

5. Понятие об атмосферных фронтах.

6. Перечислите стадии развития фронтального циклона.

7. Как меняется погода при приближении и прохождении молодого циклона?

8. Что такое процесс окклюзии циклона и фронт окклюзии? Какая погода наблюдается в окклюдированном циклоне?

9. Что такое серия циклонов?

10. Какие типы антициклонов вы знаете? Какие погодные условия наблюдаются в центральной части антициклонов? на их периферии?

11. Общая картина циклонической деятельности и ее роль в системе общей циркуляции атмосферы,

12. Объясните основные правила прогноза перемещения циклонов умеренных и высоких широт.

13. Назовите места зарождения тропических циклонов и сезоны, в которые наблюдается их наибольшая повторяемость.

14. Каковы признаки приближения тропического циклона?

15. Как разойтись с тропическим циклоном?

К оглавлению.