- •Экзаменационные вопросы по математике для студентов 1 курса очного отделения фак. Бхф спец. «Биология»
- •1. Матрицы. Основные понятия.
- •2. Классификация матриц: квадратная, диагональная и т.Д.
- •3. Матрицы. Действия над матрицами Примеры.
- •5. Невырожденные матрицы. Обратная матрица. Примеры.
- •6. Алгоритм нахождения обратной матрицы Примеры.
- •7. Определители 2-го и 3-го порядка. Основные понятия. Примеры.
- •8. Определители. Свойства определителей. Примеры.
- •9. Миноры и алгебраические дополнения элементов определителя.
- •10. Ранг матрицы. Методы вычисления. Пример.
- •11. Системы линейных уравнений. Основные понятия.
- •12. Системы линейных уравнений….. Теорема Кронекера – Капелли (без ни двух прямых; пересечение прямых.
- •13. Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений. Пример.
- •14. Системы линейных уравнений. Матричный метод решения систем линейных уравнений ( с помощью обратной матрицы). Пример.
- •15. Системы линейных уравнений. Формулы Крамера решения систем линейных уравнений. Пример.
- •16. Системы линейных однородных уравнений, условия совместности и методы решения.
- •17. Векторы. Основные понятия.
- •18. Векторы. Линейные операции над векторами. Примеры.
- •19. Линейно зависимые и линейно независимые векторы. Условие линейной зависимости.
- •Свойства линейно зависимых векторов:
- •20. Разложение вектора по базисным ортам. Направляющие косинусы.
- •21. Коллинеарные и компланарные вектора. Условия коллинеарности и компланарности.
- •22. Скалярное произведение векторов. Свойства скалярного произведения.
- •Свойства скалярного произведения векторов
- •23. Угол между двумя векторами. Ортогональные векторы. Примеры.
- •24. Векторное произведение векторов. Свойства векторного произведения. Геометрический смысл.
- •25. Смешанное произведение векторов. Свойства смешанного произведения. Геометрический смысл.
- •26. Система координат на плоскости. Связь между прямоугольными и полярными координатами.
- •27. Простейшие задачи аналитической геометрии на плоскости.
- •28. Линия на плоскости. Основные понятия.
- •29. Уравнения прямой на плоскости. Уравнение прямой с угловым коэффициентом.
- •30.Общее уравнение прямой. Частные случаи.
- •31.Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две точки. Уравнение прямой в отрезках
- •32. Уравнение прямой в полярной системе координат. Нормальное уравнение прямой. Расстояние от данной точки до прямой.
- •33. Взаимное расположение прямых на плоскости. Угол между двумя прямыми.
- •34.Условия параллельности и перпендикулярности двух прямых; пересечение прямых.
- •35. Кривые второго порядка: окружность, эллипс.
- •36. Кривые второго порядка: гипербола, парабола
- •Гипербола
- •38. Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей.
- •Условие параллельности двух плоскостей.
- •Условие перпендикулярности.
- •39.Уравнения прямой в пространстве(каноническое; параметрическое; общее уравнение; проходящей через две точки).
- •40.Множества. Действительные числа (основные понятия, числовые множества, промежутки, окрестность точки).
- •41.Функция. Способы задания функции. Основные характеристики (четность, нечетность, монотонность, обратная функция, сложная функция).
- •42.Последовательности. Числовая последовательность. Предел числовой последовательности. Число .Натуральный логарифм.
- •43.Предел функции. Предел функции в точке. Односторонние пределы. Предел функции при .
- •44.Бесконечно большая функция. Бесконечно малые функции. Определения и основные теоремы.
42.Последовательности. Числовая последовательность. Предел числовой последовательности. Число .Натуральный логарифм.
Числовая последовательности и ее предел.
Функция f(x) называется функцией целочисленного аргумента, если множество значений x, для которых она определена, является множеством всех натуральных чисел1, 2, 3,… Примером функции целочисленного аргумента может служить сумма n первых чисел натурального ряда. В данном случае
Числовой последовательностью называется бесконечное множество чисел
(1)
следующих одно
за другим в определенном порядке и
построенных по определенному закону,
с помощью которого
задается
как функция целочисленного
аргумента,
т.е.
.
Число А называется
пределом последовательности (1), если
для любого
существует
число
,
такое, что при
выполняется
неравенство
. Если
число А есть предел последовательности
(1), то пишут
Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.
Для сходящихся последовательностей имеют место теоремы:
если
.
Предел числовой последовательности. Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу a при увеличении порядкового номера n. В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.
Это определение означает, что a есть предел числовой последовательности, если её общий член неограниченно приближается к a при возрастании n. Геометрически это значит, что для любого > 0 можно найти такое число N, что начиная с n > N все члены последовательности расположены внутри интервала ( a a ). Последовательность, имеющая предел, называется сходящейся; в противном случае – расходящейся.
Последовательность
называется ограниченной,
если существует такое число M,
что | un
|
Mдля
всех n . Возрастающая
или убывающая последовательность
называется монотонной.
43.Предел функции. Предел функции в точке. Односторонние пределы. Предел функции при .
Односторонние пределы
В
определении предела
функции
считается,
что х стремится к x0 любым
способом: оставаясь меньшим, чем x0 (слева
от х0),
большим, чем хо (справа
от хо),
или колеблясь около точки x0.
Бывают случаи, когда способ приближения аргумента х к хо существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов.
Число А1 называется пределом функции у=ƒ(х) слева в точке хо, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х0-δ;xo), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х0-0 или коротко: ƒ(хо-0)=А1 (обозначение Дирихле) (см. рис. 111).
Аналогично определяется предел функции справа, запишем его с помощью символов:
Коротко предел справа обозначают ƒ(хо+0)=А.
Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А1=А2.
Справедливо и обратное утверждение: если существуют оба предела ƒ(х0-0) и ƒ(х0+0) и они равны, то существует предел и А=ƒ(х0-0).
Если же А1А2, то етот придел не существует.
Предел функции при х ∞
Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х)при х→∞, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:
Геометрический смысл этого определения таков: для ε>0 М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).
