Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мат (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
742.43 Кб
Скачать

42.Последовательности. Числовая последовательность. Предел числовой последовательности. Число .Натуральный логарифм.

Числовая последовательности и ее предел.

 Функция f(xназывается функцией целочисленного аргумента, если множество значений xдля которых она определена, является множеством всех натуральных чисел1, 2, 3,… Примером функции целочисленного аргумента может служить сумма первых чисел натурального ряда. В данном случае

Числовой последовательностью называется бесконечное множество чисел

    (1)

следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого   задается как функция целочисленного аргумента,   т.е.   .

Число А называется пределом последовательности (1), если для любого    существует число   , такое, что при   выполняется неравенство   Если число А есть предел последовательности (1), то пишут

Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.

Для сходящихся последовательностей имеют место теоремы:

 если   .

Предел числовой последовательности. Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу  a  при увеличении порядкового номера  n. В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Это определение означает, что  a  есть предел числовой последовательности, если её общий член неограниченно приближается к  a  при возрастании  n. Геометрически это значит, что для любого  > 0  можно найти такое число N,  что начиная с  n > N  все члены последовательности расположены внутри интервала ( a a  ). Последовательность, имеющая предел, называется сходящейся; в противном случае – расходящейся.

Последовательность называется ограниченной, если существует такое число M, что | un  | Mдля всех  n . Возрастающая или убывающая последовательность называется монотонной.

43.Предел функции. Предел функции в точке. Односторонние пределы. Предел функции при .

 Односторонние пределы

В   определении   предела   функции  считается, что х стремится к x0 любым способом: оставаясь меньшим, чем x0 (слева от х0), большим, чем хо (справа от хо), или колеблясь около точки x0.

Бывают случаи, когда способ приближения аргумента х к хо существенно влияет на значение придела  функции. Поэтому вводят понятия односторонних пределов.

Число А1 называется пределом функции у=ƒ(х) слева в точке хо, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х0-δ;xo), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х0-0 или коротко: ƒ(хо-0)=А1 (обозначение Дирихле) (см. рис. 111).

Аналогично определяется предел функции справа, запишем его с помощью символов:

Коротко предел справа обозначают ƒ(хо+0)=А.

Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует   , то существуют и оба односторонних предела, причем А=А12.

Справедливо и обратное утверждение: если существуют оба предела ƒ(х0-0) и ƒ(х0+0) и они равны, то существует предел   и А=ƒ(х0-0).

Если же А1А2, то етот придел не существует.

  Предел функции при х  ∞

Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х)при х→, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:

Геометрический смысл этого определения таков: для ε>0   М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).