- •Предисловие
- •Раздел 1. Биологичекие основы искуственного воспроизводства рыб.
- •Глава 1. Значение рыбоводства в сохранении и увеличении рыбных запасов в условиях антропогенного воздействия на природу
- •Рыбоводство в естественных водоемах. Задачи, значение направленном формировании популяций промысловых рыб во внутренних водоемах
- •Достижения рыбоводства в естественных водоёмах, масштабы развития,
- •1.3 Объекты искусственного воспроизводства
- •1.4. Географическое расположение рыбоводных предприятий по
- •1.5. Перспективы развития рыбоводства во внутренних водоёмах
- •1.6. Основные этапы развития рыбоводства в древности и средние века
- •1.7. Формирование научных основ рыбоводства в XVIII—XIX веках
- •1.8. Развитие теории и практики искусственного разведения рыб в России в 50-е
- •1.9. Искусственное воспроизводство рыб во второй половине XIX века
- •1.10. Работы российских ихтиологов и рыбоводов в конце XIX - начале XX вв.
- •1.11. Основные этапы развития рыбоводства в нашей стране в XX веке.
- •Контрольные вопросы и задания:
- •Глава 2. Биологические особенности рыб в связи с их воспроизводством
- •2.1. Теория экологических групп рыб и её значение для рыбоводства
- •2.2. Теория этапности развития рыб и её значение для рыбоводства
- •2.3. Внутривидовая биологическая дифференциация и её значение для
- •2.4. Влияние факторов внешней среды на процесс созревания, овуляцию и
- •2.5. Нарушение гаметогенеза и полового цикла в связи с изменением условий
- •2.6 Реакция популяций рыб на нарушение условий их миграции и размножения
- •Периоды развития и роль факторов внешней среды в раннем онтогенезе рыб
- •Длительность развития эмбриона севрюги в зависимости
- •Гидрофильного коллоида
- •И щелевидного бластопора
- •Конца зачатка выделительной системы и стадия
- •Хвоста достигает сердца (31), немного заходит за голову (33) и достигает начала продолговатого мозга (34)
- •Хронология эмбрионального развития русского осетра (по л.С. Гинзбург, та. Детлаф, o.II. Шмальгаузен, 1981)
- •Хронологни развитии предличинок русскою осетра (по а.С. Гннзбург, т.А. Детлаф, o.И. Шмальгаузен, 1981)
- •2.8. Теория критических периодов
- •2.9 Выживание рыб на отдельных этапах развития. Промысловый
- •Контрольные вопросы и задания:
- •Глава 3. Основы проектирования рыбоводных заводов и нерестово-выростных хозяйств
- •3.1 Характеристика рыбоводных заводов
- •3.2 Характеристика нерестово-выростных хозяйств
- •3.3 Основы проектирования рыбоводных заводов и нерестово-выростных
- •Контрольные вопросы и задания:
- •Глава 4. Биологические основы управления половыми циклами рыб
- •4.1. Эколого-физиологические основы управления половыми циклами рыб при
- •4.2. Метод гипофизарных инъекций, история возникновения, развитие и значение в
- •4.3. Гормональная регуляция репродуктивной функции рыб
- •4.4. Факторы, определяющие гонадотропную активность гипофиза, рыбы-доноры
- •4.5. Определение гонадотропной активности гипофиза рыб
- •4.6. Гормональные препараты теплокровных животных и другие вещества
- •Контрольные вопросы и задания:
- •Глава 5. Биологические особенности производителей, получения половых продуктов и осеменения икры рыб
- •5.1. Влияние возраста производителей на жизнестойкость потомства
- •5.2. Заготовка производителей и способы их доставки на рыбоводные заводы и
- •5.3. Определение степени зрелости гонад
- •5.4. Методы стимулирования созревания половых клеток у различных
- •5.5. Влияние внешних условий на действие гипофизарных инъекций и на
- •5.6. Способы получения зрелой икры и спермы, осеменения икры
- •После отцеживания икры из яйцеводов для надреза одного из яйцеводов
- •5.7. Оценка качества половых клеток рыб
- •5.8. Эффективность различных способов осеменения икры в зависимости от
- •5.9. Способы хранения и транспортировки икры и спермы
- •Контрольные вопросы и задания:
- •Глава 6. Биологическое обеспечение условий инкубации икры, выдерживания предличинок, подращивания личинок и выращивания молоди рыб
- •6.1. Биологические основы подготовки икры к инкубации
- •6.2. Внезаводской и заводской методы инкубации икры рыб, инкубационные
- •Предличинок рыбца и кутума
- •6.3. Выбор режима инкубации в зависимости от видовых адаптаций
- •6.4. Факторы, влияющие на процесс инкубации икры, и возможность их
- •6.5. Продолжительность и особенности инкубации икры различных видов рыб
- •6.6. Выбор рыбоводного оборудования для выдерживания предличинок,
- •6.7. Выдерживание предличинок и подращивание личинок рыб
- •6.8. Методы выращивания молоди рыб, их преимущества и недостатки
- •6.9. Биологическое обоснование длительности выращивания молоди проходных и
- •Шкала для определения степени серебрения мололи
- •6.10. Способы учёта молоди рыб
- •Зависимость между концентрацией рыб в водоёме
- •6.11. Современные методы мечения рыб
- •6.12. Выпуск молоди, мероприятия, обеспечивающие наибольшее её выживание
- •Контрольные вопросы и задания:
- •Глава 7. Интенсификация рыбоводных процессов
- •7.1. Цели и методы интенсификации рыбоводных процессов
- •7.2. Смешанные посадки, добавочные рыбы, поликультура
- •7.3. Теоретические основы удобрения прудов
- •7.4. Живые корма, биологические основы массового культивирования кормовых
- •7.5. Теоретические основы кормления. Требования к качеству комбикорма
- •7.6. Неживые корма, их характеристика
- •7.7. Способы производства комбикормов
- •7.8. Влияние факторов внешней среды на эффективность кормления. Кормовой
- •7.9. Хранение кормов, определение их качества
- •7.10. Приготовление корма на рыбоводном предприятии
- •Качественная характеристика пастообразных кормосмесей
- •Контрольные вопросы и задания:
- •Раздел 2. Акклиматизация рыб и беспозвоночных, рыбохозяйственная мелиорация
- •Глава 8.
- •Акклиматизация рыб, пищевых и кормовых беспозвоночных
- •8.1. Теоретические основы акклиматизации гидробионтов, терминология
- •8.2. Адаптации особей, популяций, видов в процессе акклиматизации
- •8.3. Принципы и методы выбора форм для акклиматизации
- •8.4. Категории процесса акклиматизации
- •8.5. Методы, способы, оценка результатов акклиматизации
- •8.6. Объекты акклиматизации
- •8.7. Подготовка мероприятий по акклиматизации гидробионтов, биотехника
- •8.8. Значение внешней среды и свойств гидробионтов при акклиматизации
- •Контрольные вопросы и задания:
- •Глава 9. Рыбохозяйственная мелиорация
- •9.1. Задачи рыбохозяйственной мелиорации, её классификация
- •9.2. Мелиорация нерестилищ: русловых для проходных и весеннезатопляемых для
- •9.3. Характеристика искусственных нерестилищ для литофильных и фитофильных
- •9.4. Способы улучшения качества воды и почвы
- •9.5. Борьба с заилением и зарастанием рыбохозяйственных водоёмов
- •9.6. Борьба с врагами и конкурентами рыб в питании
- •9.7. Спасение молоди
- •9.8. Скат молоди рыб, поведение рыб в потоке воды, реореакция
- •9.9. Причины и закономерности попадания рыб в водозаборные сооружения
- •9.10. Принципы защиты рыб от попадания в водозаборные сооружения
- •9.11. Рыбозащитные устройства
- •9.12. Рыбопропускные сооружения
- •Контрольные вопросы и задания:
- •Список литературы
- •Раздел 1. Биологические основы
- •Глава 1. Значение рыбоводства в сохранении и увеличении рыбных запасов в условиях антропогенного воздействия на природу ………………………………………………………... 5
- •Глава 2. Биологические особенности рыб в связи с их воспроизводством ………………... 54
- •Глава 3. Основы проектирования рыбоводных заводов и нерестово-выростных
- •Глава 4. Биологические основы управления половыми циклами рыб ……………………. 97
- •Глава 5. Биологические особенности производителей, получения половых продуктов и осеменения икры рыб ……………………………………………………………………………. 113
- •Глава 6. Биологическое обеспечение условий инкубации икры, выдерживания предличинок, подращивания личинок н выращивания молоди рыб …………………….. 134
- •Глава 7. Интенсификация рыбоводных процессов ………………………………………….. 180
- •Раздел 2. Акклиматизация рыб и беспозвоночных, рыбохозяйственная мелиорация ……………………………………………………………………………………. 207
- •Глава 8. Акклиматизация рыб, пищевых и кормовых беспозвоночных …………………. 207
- •Глава 9. Рыбохозяйственная мелиорация ……...……………………………………………... 237
Длительность развития эмбриона севрюги в зависимости
от температуры воды (по А.Н. Державину)
Средняя температура воды, °С |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
Часы |
80.0 |
71.0 |
64.3 |
59.8 |
55.9 |
52.5 |
19.3 |
46.5 |
44.0 |
Различные стадии развития одного и того же вида могут характеризоваться разной шириной диапазона оптимальных температур. Его ширина увеличивается по мере дифференцировки организма — от начала дробления зиготы до конца гаструляции начала нейруляции. Однако из этого правила существуют исключения, оно более приемлемо для эвритермных рыб, эмбриональное развитие которых происходит в относительно узком диапазоне температур, начинаясь с вполне определённых нерестовых температур и расширяясь к концу эмбриогенеза и далее в постэмбриональном развитии.
У эвритермных рыб диапазон температурной толерантности расширяется также и в процессе онтогенеза. При этом важным фактором является не только величина температуры, но и диапазон, а также частота перемен её величин, то есть осцилляция. Установлено, что осцилляция температуры в пределах экологической валентности вида ускоряет рост особей относительно выращиваемых при стабильных температурах и приравнивается к темпу роста при верхней границе диапазона температурного оптимума. Амплитуда и частота колебаний температуры, а также скорость её изменения видоспецифичны для оптимального роста рыб. У стенотермных видов указанные параметры значительно ниже, чему эвритермных. Степень этого различия коррелирует с температурой, наблюдаемой в термике естественных местообитаний рыб. Существенное повышение скорости роста, улучшение физиологического состояния и более эффективное использование потребленной энергии на рост, отмечаемые у молоди рыб при переменном термическом режиме, говорят о перспективности его использования в индустриальных условиях. Наблюдаемый эффект, видимо, обусловлен как большей полиморфностью ферментных систем эвритермных рыб, так и большей эффективностью работы мономорфной ферментной системы при осцилляции температуры. Осцилляция температур при наличии полиморфности ферментнысистем увеличивает суммарный эффект работы ферментов, поскольку каждый изофермент при осцилляции температуры проходит через свой температурный оптимум.
Температура влияет как на рост рыб и обменные процессы в организме, так и на их морфологические параметры. Например, с понижением температуры в период эмбрионального и личиночного развития увеличивается количество меристических признаков, в частности, число позвонков, миомеров. Эти закономерности надо учитывать при заводском воспроизводстве рыб.
Помимо температуры, важным фактором, влияющим на эмбриогенез рыб, не только морских, но и пресноводных является солёность воды. Так, изучение влияния солёности воды на эмбриональное развитие пресноводных рыб и проходных лососевых показало, что устойчивость развивающейся икры к повышению солёности закономерно меняется в онтогенезе. Установленные пределы солёности воды для выживаемости на отдельных этапах эмбриогенеза икры сёмги, микижи и радужной форели, например, показали, что нормальное развитие икры этих видов на всех этапах эмбриогенеза возможно в воде солёностью 5-6%. При этом снижается вероятность поражения икры сапролегнией и увеличивается процент выхода предличинок. Эти данные легли в основу практических рекомендаций по инкубации икры лососевых рыб в солоноватой воде.
Важнейшими составными частями среды обитания рыб являются газы (количественное содержание и качественный состав), наибольшее значение из них имеет кислород. Наличие высоких концентраций диоксида углерода, сероводорода, аммиака и других отрицательно сказывается на эмбриогенезе. Так, избыток диоксида углерода угнетает жизнедеятельность рыб, но в ещё большей мере его негативное влияние на них проявляется из-за изменения при этом рН среды. Аммиак, а тем более сероводород, являющиеся продуктами метаболизма рыб и особенно гнилостных процессов, интенсифицирующихся в среде при недоиспользовании кормов, непосредственно влияют на метаболизм рыб — сдерживают темп роста, а иногда приводят к гибели всего населения водоёма.
Наличие кислорода в воде является обязательным для любых рыб на всех этапах развития. Однако кислородные потребности у разных видов значительно различаются. Так, реофильные рыбы и обитатели пелагиали морских вод, особенно с высокой двигательной активностью (форель, хариус, кефали), наиболее чувствительны к недостатку кислорода. Лимнофильные рыбы, и в частности донные обитатели, а также малоподвижные рыбы, имеющие дополнительные органы потребления кислорода (африканский сом Clarias gariepinus, караси Carassius spp.), нетребовательны к дефициту кислорода.
Не только недостаток, но и избыток кислорода вреден для рыб. Перенасыщение воды кислородом приводит к уменьшению темпа роста рыб и увеличению перекисного окисления жиров в их теле, что снижает защитные реакции и увеличивает предрасположенность рыб к заболеваниям. В эмбриональном периоде развития перенасыщение воды кислородом обуславливает недоразвитие эмбриональной кровеносной системы, отсутствие эритроцитов, не заполнение плавательного пузыря воздухом у некоторых видов рыб.
Изучение влияния концентрации кислорода в воде на эмбриогенез рыб показало, что наиболее ранним внешним проявлением её действия является изменение скорости развития и роста в ряду концентраций от нижней летальной до величин, значительно превышающих его естественное содержание, то есть заведомо больших, чем критические концентрации кислорода. Так, у эмбрионов щуки скорость развития возрастает с увеличением содержания кислорода в воде при инкубации икры, причём во всём возможном для их развития диапазоне его концентраций — от нижней (2,3 мг/л) до верхней (40-41 мг/л) летальной границы.
В позднем эмбриогенезе избыток кислорода задерживает процессы, связанные с вылуплением предличинок из оболочки. В случаях предельных концентраций происходит полная резорбция желтка эмбриона, так и не вылупившегося из оболочки. Если инкубацию икры осуществляют при интенсивном барботаже воды воздухом или кислородом, то время вылупления личинок рассчитывают по градусодням с прекращением барботажа к моменту расчётного вылупления. Это способствует их вылуплению, как и любой другой способ уменьшения содержания кислорода в среде перед вылуплением предличинок. Примером может быть использование инкубационных аппаратов, позволяющих инкубировать значительное количество икры фитофильных карповых рыб, а также осетровых в одном аппарате, где икра поддерживается во взвешенном или периодически взвешенном состоянии, а вылупление происходит после полного прекращения подачи воды в аппарат на 5-15 минут. Этот способ позволяет существенно экономить воду, а также использовать биологически активные вещества в процессе инкубации икры.
Не последнюю роль после инкубации икры играет сама доступность воздуха для личинок при заполнении плавательного пузыря. Так, одной из обычных причин не заполнения плавательного пузыря карповых рыб является наличие бактериальной плёнки на поверхности воды: личинка захватывает пузырёк воздуха в ротовую полость и глотку, но не способна протолкнуть его через ductus pneumaticus в плавательный пузырь, что приводит к массовой гибели личинок.
Особую опасность для рыб представляет атомарный кислород, поступающий в водную среду в виде озона и наиболее часто появляющийся в замкнутых системах, где для бактерицидной обработки воды или используют ультрафиолетовое излучение, или озонируют саму воду. Озон вызывает гибель объектов разведения, провоцируя свободно-радикальное перекисное окисление липидов, хотя его применение основано на бактерицидном свойстве ультрафиолетового излучения. Для удаления озона применяют фильтры с активированным углём, переводящим озон в молекулярный кислород. В любом случае необходимо контролировать содержание кислорода в воде — оно должно соответствовать нормам для каждого объекта выращивания.
Другой причиной не заполнения плавательного пузыря является использование для выдерживания предличинок фитофильных рыб. в частности карпа (с момента вылупления предличинок до перехода их на плав), аппаратов, где вода подаётся снизу через щели на специальное устройство, обеспечивающее вращение воды в аппарате. При этом из-за вращения воды стремящиеся к поверхности личинки проходят столь длинный путь, двигаясь по спирали, что оказываются не в состоянии достичь поверхности. Они расходуют столько энергии. что к моменту перехода на плав полностью резорбируют запасы желточного мешка и ложатся на дно с незаполненным плавательным пузырём. Во избежание этого следует применять любую конструкцию для выдерживания, позволяющую личинке отдыхать (используя железы прикрепления) и затрачивать минимум энергии.
При отсутствии кислорода в воде эмбрион погибает от удушья. Пониженное содержание кислорода в воде замедляет развитие эмбриона. Если же недостаточность кислорода проявляется при повышенной температуре (по сравнению с оптимумом), то развитие эмбриона идёт ненормально, что приводит к уродству, а в дальнейшем к гибели. Подобное явление наблюдается и при высоких концентрациях диоксида углерода (СО2), которые могут быть при инкубации большого количества икры при ограниченном расходе воды. В этом случае диоксид углерода сдвигает водородный показатель в кислую сторону и нарушает газовый обмен в клетках эмбриона.
Отношение эмбрионов к температуре, газовому режиму солёности, свету, механическим воздействиям на отдельных стадиях этапов развития различно. Одни стадии более чувствительны к резким изменениям абиотических условий среды, что приводит к увеличению количества уродливых эмбрионов и их гибели, другие — менее чувствительны. Повышенная чувствительность к резким изменениям среды проявляется на стадиях первых этапов (оплодотворение — гаструляция) и на этапе перед вылуплением.
Следовательно, инкубацию икры можно проводить только в таких условиях, при которых факторы внешней среды обеспечивают нормальное течение эмбриогенеза.
Вылупившаяся предличинка, первое время ведёт пассивный образ жизни. Она питается за счёт питательных веществ, содержащихся в желточном мешке. Желточный мешок является также провизорным органом дыхания предличинки. По мере роста предличинки желточный мешок постепенно уменьшается. Незадолго до окончательной его резорбции заканчивается предличиночный и начинается личиночный период развития. Предличинка становится личинкой, которая переходит на смешанное питание. На этом этапе развития личинка использует питательные вещества, содержащиеся в желточном мешке, и потребляет корм из внешней среды.
Желточный мешок у личинки вскоре полностью резорбируется и она окончательно переходит на внешнее питание. Продолжительность личиночного периода развития, как и эмбрионального, у разных видов рыб неодинакова (от нескольких суток у весеннее нерестующих рыб, до месяца — у осенне-нерестующих). У каждого вида она увеличивается при низких и уменьшается при высоких температурах, а также зависит от других факторов внешней среды.
Личинка растёт, развивается и через некоторое время превращается в малька, который по внешнему виду ничем не отличается от взрослой рыбы.
Эмбриональный период развития осетровых (по А.С. Гинзбург, Т.А. Детлаф, О.И. Шмальгаузен, 1981). В эмбриональном развитии осетровых рыб выделяют пять последовательных этапов, включающих 35 стадий (табл. 2).
1-й этап — оплодотворение (1-3-я стадии) (рис. 30-31) Следствием осеменения является набухание оболочек, совпадающее со значительным увеличением прочности. Через несколько минут наблюдается поворот яйца: вегетативное полушарие переходит вниз, а анимальное вверх. Затем между анимальной областью и оболочками создаётся перивителлиниовое пространство.
5
Рис. 30. Стадия 2 — яйцо осетра после поворота и выделения
