- •Часть 4
- •6.1.1. Развитие представлений о природе света
- •6.1.2. Свет как электромагнитная волна
- •6.1.3. Основные законы геометрической оптики
- •6.1.4. Оптические системы. Линзы
- •6.1.5. Погрешности оптических систем
- •6.1.6. Основные фотометрические величины и их единицы
- •Лекция 36
- •6.2. Интерференция света
- •6.2.1. Интерференция света
- •6.2.2. Интерференция от двух когерентных источников. Метод Юнга
- •6.2.3. Интерференция света при отражении от тонких пластинок и пленок
- •6.2.4. Полосы равного наклона
- •6.2.5. Полосы равной толщины. Кольца Ньютона
- •6.2.6. Применение интерференции света. Просветление оптики
- •Лекция 37
- •6.3. Дифракция света
- •6.3.1. Принцип Гюйгенса – Френеля. Метод зон Френеля
- •6.3.2. Дифракция Френеля от круглого отверстия и круглого диска
- •6.3.3. Дифракция Фраунгофера от щели
- •6.3.4. Дифракционная решетка
- •6.3.5. Дифракция рентгеновских лучей
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 38
- •6.4. Поляризация света
- •6.4.1. Естественный и поляризованный свет. Закон Малюса
- •6.4.2. Поляризация света при преломлении и отражении на границе двух диэлектриков
- •Двойное лучепреломление
- •Искусственная оптическая анизотропия. Эффект Керра
- •6.4.5. Интерференция поляризованных лучей
- •Лекция 39
- •6.5. Взаимодействие электромагнитных волн с веществом
- •6.5.1. Вращение плоскости поляризации
- •6.5.2. Дисперсия света
- •6.5.3. Поглощение света
- •6.5.4. Рассеяние света
- •6.5.5. Эффект Вавилова – Черенкова (Излучение Черенкова-Вавилова)
- •Лекция 40
- •6.6. Тепловое излучение, его характеристики и законы
- •Виды излучения
- •Характеристики теплового излучения
- •6.6.3. Закон Кирхгофа
- •Закон Стефана – Больцмана и законы Вина
- •Формулы Рэлея – Джинса и Планка
- •Лекция 41
- •6.7. Фотоэлектрический эффект. Эффект Комптона
- •6.7.1. Внешний фотоэффект
- •6.7.2. Внутренний и вентильный фотоэффект
- •6.7.3. Применение фотоэффекта
- •6.7.4. Фотоны
- •6.7.5. Корпускулярно-волновой дуализм света
- •6.7.6. Эффект Комптона
- •7.1.2. Модель атома Томсона
- •7.1.3. Опыты Резерфорда и ядерная модель атома
- •7.1.4. Постулаты Бора
- •7.1.5. Опыт Франка и Герца
- •7.1.6. Боровская теория атома водорода
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 43
- •7.2. Корпускулярно-волновой дуализм материи
- •7.2.1. Гипотеза де Бройля
- •7.2.2. Экспериментальные подтверждения гипотезы де Бройля
- •7.2.3. Соотношение неопределенностей
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 44
- •7.3. Волновая функция. Уравнение Шредингера
- •7.3.1. Волновая функция и ее физический смысл
- •7.3.2. Уравнение Шредингера
- •7.3.3. Частица в бесконечно глубокой одномерной потенциальной яме
- •7.4.1.2. Квантовые числа
- •7.4.1.3. Спин электрона
- •7.4.2. Прохождение частицы через потенциальный барьер. Туннельный эффект
- •7.4.3. Распределение электронов в атоме по энергетическим уровням
- •7.4.3.1. Фермионы и бозоны
- •7.4.3.2. Принцип запрета Паули
- •7.4.3.3. Периодическая система элементов д.И.Менделеева
- •Лекция 46
- •7.5. Энергетические спектры атомов
- •7.5.1. Оптические спектры
- •7.5.2. Рентгеновское излучение
- •7.5.2.1. Тормозное рентгеновское излучение
- •7.5.2.2. Характеристическое рентгеновское излучение
- •7.5.3. Вынужденное излучение
- •8.1. 1. Состав и характеристики атомного ядра
- •8.1.2. Энергия связи ядра
- •8.1.3. Природа ядерных сил
- •8.1.4. Модели атомного ядра
- •Лекция 48
- •8.2. Радиоактивность
- •8.2.1. Естественная и искусственная радиоактивность
- •8.2.2. Закон радиоактивного распада
- •8.2.3. Виды радиоактивности Альфа-распад
- •Бета-распад
- •Протонная и двупротонная радиоактивность
- •Спонтанное деление тяжелых ядер
- •- Излучение
- •Дозы излучения
- •8.2.4. Ядерные реакции
- •8.2.5. Деление ядер. Цепные ядерные реакции
- •8.2.6. Термоядерные реакции
- •Лекция 49
- •8.3. Физика элементарных частиц
- •8.3.1. Фундаментальные физические взаимодействия
- •8.3.2. Элементарные частицы как структурный уровень организации материи
- •8.3.3. Характеристики элементарных частиц
- •Лекция 50 Классификация элементарных частиц
- •8.3.4. Классификация элементарных частиц
- •8.3.4.1. Лептоны
- •8.3.4.2. Адроны
- •8.3.5. Кварковая модель адронов
- •8.3.6. Частицы – переносчики взаимодействий
- •8.3.7. Стандартная модель элементарных частиц
- •8.3.8. На пути к единой теории
- •Лекция 51 Современные космологические представления
- •1. Звездная форма бытия космической материи
- •2. Эволюция звезд
- •3. Современные космологические модели Вселенной
- •4. Происхождение и развитие Вселенной
8.3.2. Элементарные частицы как структурный уровень организации материи
При введении понятия «элементарные частицы» предполагалось, что они представляют собой первичные, далее неделимые частицы, из которых состоит вся материя. Понятие «элементарные частицы» сформировалось в тесной связи с установлением дискретного характера строения вещества. До начала ХХ века таковыми считались атомы. После установления сложной структуры атома они перестали считаться элементарными частицами в указанном смысле слова. Такая же судьба постигла ядро, а затем протон и нейтрон, у которых была установлена внутренняя структура. В дальнейшем было открыто большое количество объектов, претендующих на роль элементарных частиц. В настоящее время термин «элементарные частицы» употребляется не в своем точном значении. Элементарными частицами сейчас называют большую группу мельчайших наблюдаемых частиц материи, не являющихся атомами или атомными ядрами (за исключением протона – ядра атома водорода). Общее свойство элементарных частиц в современном понимании состоит в том, что они являются специфическими формами материи, не ассоциированными в атомы и атомные ядра.
Эта группа частиц оказалась необычайно обширной. Помимо протона, нейтрона, электрона и фотона к ней относятся пи-мезоны, мюоны, тау-лептоны, нейтрино, странные частицы ( - мезоны и гипероны), очарованные и прелестные частицы ( - и - мезоны и соответствующие барионы), разнообразные резонансы, промежуточные векторные бозоны и, наконец, открытый недавно бозон Хиггса. В настоящее время обнаружено около 400 таких частиц, и их число все время растет.
Наиболее характерным свойством элементарных частиц является их способность рождаться и взаимопревращаться друг в друга при столкновениях. При этом выполняются законы сохранения полной энергии и импульса. Например:
Вторая характерная черта элементарных частиц – большинство из них нестабильны. Частицы после рождения самопроизвольно распадаются. Среднее время жизни свободных частиц изменятся в диапазоне от 10-24 с до бесконечности. Распад элементарных частиц и их взаимопревращаемость друг в друга ставит под сомнение правомерность вопроса «Из чего состоит частица?». При распаде нейтрона
возникают
новые частицы протон
электрон
и
антинейтрино
,
но это не означает, что нейтрон состоит
из протона, электрона и антинейтрино.
Из опыта следует только, что эти частицы
рождаются при распаде нейтрона. При
распаде протона
рождаются
нейтрон
,
позитрон
и
нейтрино
,
но это не означает, что протон состоит
из нейтрона, позитрона и нейтрино.
Нейтрон в той же мере элементарен, как
и протон.
Элементарные частицы представляют особый вид материи, качественно отличный от более сложных частиц. К ним неприменимы категории простого и сложного, составной части и структурного целого, как, например, к атомам и молекулам. Продукты распада элементарной частицы не более просты, чем породившая их частица. Они также являются элементарными частицами, т.е. находятся на том же уровне структурной иерархии материи, что и распавшаяся частица. Почти каждая элементарная частица может быть «составной частью» другой элементарной частицы.
