- •Часть 4
- •6.1.1. Развитие представлений о природе света
- •6.1.2. Свет как электромагнитная волна
- •6.1.3. Основные законы геометрической оптики
- •6.1.4. Оптические системы. Линзы
- •6.1.5. Погрешности оптических систем
- •6.1.6. Основные фотометрические величины и их единицы
- •Лекция 36
- •6.2. Интерференция света
- •6.2.1. Интерференция света
- •6.2.2. Интерференция от двух когерентных источников. Метод Юнга
- •6.2.3. Интерференция света при отражении от тонких пластинок и пленок
- •6.2.4. Полосы равного наклона
- •6.2.5. Полосы равной толщины. Кольца Ньютона
- •6.2.6. Применение интерференции света. Просветление оптики
- •Лекция 37
- •6.3. Дифракция света
- •6.3.1. Принцип Гюйгенса – Френеля. Метод зон Френеля
- •6.3.2. Дифракция Френеля от круглого отверстия и круглого диска
- •6.3.3. Дифракция Фраунгофера от щели
- •6.3.4. Дифракционная решетка
- •6.3.5. Дифракция рентгеновских лучей
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 38
- •6.4. Поляризация света
- •6.4.1. Естественный и поляризованный свет. Закон Малюса
- •6.4.2. Поляризация света при преломлении и отражении на границе двух диэлектриков
- •Двойное лучепреломление
- •Искусственная оптическая анизотропия. Эффект Керра
- •6.4.5. Интерференция поляризованных лучей
- •Лекция 39
- •6.5. Взаимодействие электромагнитных волн с веществом
- •6.5.1. Вращение плоскости поляризации
- •6.5.2. Дисперсия света
- •6.5.3. Поглощение света
- •6.5.4. Рассеяние света
- •6.5.5. Эффект Вавилова – Черенкова (Излучение Черенкова-Вавилова)
- •Лекция 40
- •6.6. Тепловое излучение, его характеристики и законы
- •Виды излучения
- •Характеристики теплового излучения
- •6.6.3. Закон Кирхгофа
- •Закон Стефана – Больцмана и законы Вина
- •Формулы Рэлея – Джинса и Планка
- •Лекция 41
- •6.7. Фотоэлектрический эффект. Эффект Комптона
- •6.7.1. Внешний фотоэффект
- •6.7.2. Внутренний и вентильный фотоэффект
- •6.7.3. Применение фотоэффекта
- •6.7.4. Фотоны
- •6.7.5. Корпускулярно-волновой дуализм света
- •6.7.6. Эффект Комптона
- •7.1.2. Модель атома Томсона
- •7.1.3. Опыты Резерфорда и ядерная модель атома
- •7.1.4. Постулаты Бора
- •7.1.5. Опыт Франка и Герца
- •7.1.6. Боровская теория атома водорода
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 43
- •7.2. Корпускулярно-волновой дуализм материи
- •7.2.1. Гипотеза де Бройля
- •7.2.2. Экспериментальные подтверждения гипотезы де Бройля
- •7.2.3. Соотношение неопределенностей
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 44
- •7.3. Волновая функция. Уравнение Шредингера
- •7.3.1. Волновая функция и ее физический смысл
- •7.3.2. Уравнение Шредингера
- •7.3.3. Частица в бесконечно глубокой одномерной потенциальной яме
- •7.4.1.2. Квантовые числа
- •7.4.1.3. Спин электрона
- •7.4.2. Прохождение частицы через потенциальный барьер. Туннельный эффект
- •7.4.3. Распределение электронов в атоме по энергетическим уровням
- •7.4.3.1. Фермионы и бозоны
- •7.4.3.2. Принцип запрета Паули
- •7.4.3.3. Периодическая система элементов д.И.Менделеева
- •Лекция 46
- •7.5. Энергетические спектры атомов
- •7.5.1. Оптические спектры
- •7.5.2. Рентгеновское излучение
- •7.5.2.1. Тормозное рентгеновское излучение
- •7.5.2.2. Характеристическое рентгеновское излучение
- •7.5.3. Вынужденное излучение
- •8.1. 1. Состав и характеристики атомного ядра
- •8.1.2. Энергия связи ядра
- •8.1.3. Природа ядерных сил
- •8.1.4. Модели атомного ядра
- •Лекция 48
- •8.2. Радиоактивность
- •8.2.1. Естественная и искусственная радиоактивность
- •8.2.2. Закон радиоактивного распада
- •8.2.3. Виды радиоактивности Альфа-распад
- •Бета-распад
- •Протонная и двупротонная радиоактивность
- •Спонтанное деление тяжелых ядер
- •- Излучение
- •Дозы излучения
- •8.2.4. Ядерные реакции
- •8.2.5. Деление ядер. Цепные ядерные реакции
- •8.2.6. Термоядерные реакции
- •Лекция 49
- •8.3. Физика элементарных частиц
- •8.3.1. Фундаментальные физические взаимодействия
- •8.3.2. Элементарные частицы как структурный уровень организации материи
- •8.3.3. Характеристики элементарных частиц
- •Лекция 50 Классификация элементарных частиц
- •8.3.4. Классификация элементарных частиц
- •8.3.4.1. Лептоны
- •8.3.4.2. Адроны
- •8.3.5. Кварковая модель адронов
- •8.3.6. Частицы – переносчики взаимодействий
- •8.3.7. Стандартная модель элементарных частиц
- •8.3.8. На пути к единой теории
- •Лекция 51 Современные космологические представления
- •1. Звездная форма бытия космической материи
- •2. Эволюция звезд
- •3. Современные космологические модели Вселенной
- •4. Происхождение и развитие Вселенной
7.4.1.3. Спин электрона
Ранее
было установлено, что орбитальный
момент импульса электрона
связан с пропорциональным ему магнитным
моментом
;
оба момента ориентированы перпендикулярно
плоскости орбиты электрона и
противоположно направлены, как показано
на рисунке.
М
ежду
и
существует связь:
Учитывая правило квантования момента импульса электрона, получим квантовое значение магнитного момента:
и проекции магнитного момента на выделенное направление:
В
1922 году немецкие физики О. Штерн и
В. Герлах поставили опыты, целью которых
было измерение магнитных моментов
атомов различных химических элементов.
Для химических элементов, образующих
первую группу таблицы Менделеева и
имеющих один валентный электрон,
магнитный момент атома равен магнитному
моменту валентного электрона, т.е. одного
электрона. В опытах узкий пучок атомов
серебра в основном состоянии пропускался
через сильно неоднородное магнитное
поле и попадал на экран. Ва-лентный
электрон в основном состоянии атома
серебра имеет орбитальное квантовое
число
(
– состояние). Но при
и соответственно проекция момента
импульса на направление магнитного
поля (а с ней и проекция магнитного
момента
)
равна нулю. Поэтому пучок атомов серебра
в магнитном поле не должен отклоняться.
Но на опыте были получены совершенно
неожиданные результаты: на фотопластинке
получились две резкие полосы – все
атомы отклонялись в магнитном поле
двояким образом, соответствующим лишь
двум возможным ориентациям магнитного
момента.
В
1925 г. Гаудсмит и Уленбек для объяснения
результатов опытов Герлаха и Штерна
предположили существование у электрона
собственного механического момента
импульса у электрона
(спина) и, соответственно, собственного
магнитного момента электрона
.
Введение понятия спина позволило
объяснить результаты опытов: расщепление
пучка атомов серебра обусловлено
наличием у электронов собственного
механического (спина) и магнитного
моментов.
Спин микрочастицы – квантовая величина у нее нет аналога, это внутреннее неотъемлемое свойство электрона, подобно заряду и массе. Электрон обладает собственным неучтожимым механическим моментом импульса - спином, который не связан с движением электрона в пространстве. П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.
Из общих выводов квантовой механики следует, что собственный момент импульса электрона квантуется:
где – спиновое квантовое число, равное 1/2.
Аналогично,
проекция спина на ось z
(ось z совпадает с
на-правлением внешнего магнитного поля)
должна быть квантована:
где
Для атомов первой группы, валентный электрон которых находится в – состоянии ( = 0) момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле.
Найдем численное значение спина электрона:
Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:
Отношение
называется спиновым гиромагнитным отношением.
