- •Часть 4
- •6.1.1. Развитие представлений о природе света
- •6.1.2. Свет как электромагнитная волна
- •6.1.3. Основные законы геометрической оптики
- •6.1.4. Оптические системы. Линзы
- •6.1.5. Погрешности оптических систем
- •6.1.6. Основные фотометрические величины и их единицы
- •Лекция 36
- •6.2. Интерференция света
- •6.2.1. Интерференция света
- •6.2.2. Интерференция от двух когерентных источников. Метод Юнга
- •6.2.3. Интерференция света при отражении от тонких пластинок и пленок
- •6.2.4. Полосы равного наклона
- •6.2.5. Полосы равной толщины. Кольца Ньютона
- •6.2.6. Применение интерференции света. Просветление оптики
- •Лекция 37
- •6.3. Дифракция света
- •6.3.1. Принцип Гюйгенса – Френеля. Метод зон Френеля
- •6.3.2. Дифракция Френеля от круглого отверстия и круглого диска
- •6.3.3. Дифракция Фраунгофера от щели
- •6.3.4. Дифракционная решетка
- •6.3.5. Дифракция рентгеновских лучей
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 38
- •6.4. Поляризация света
- •6.4.1. Естественный и поляризованный свет. Закон Малюса
- •6.4.2. Поляризация света при преломлении и отражении на границе двух диэлектриков
- •Двойное лучепреломление
- •Искусственная оптическая анизотропия. Эффект Керра
- •6.4.5. Интерференция поляризованных лучей
- •Лекция 39
- •6.5. Взаимодействие электромагнитных волн с веществом
- •6.5.1. Вращение плоскости поляризации
- •6.5.2. Дисперсия света
- •6.5.3. Поглощение света
- •6.5.4. Рассеяние света
- •6.5.5. Эффект Вавилова – Черенкова (Излучение Черенкова-Вавилова)
- •Лекция 40
- •6.6. Тепловое излучение, его характеристики и законы
- •Виды излучения
- •Характеристики теплового излучения
- •6.6.3. Закон Кирхгофа
- •Закон Стефана – Больцмана и законы Вина
- •Формулы Рэлея – Джинса и Планка
- •Лекция 41
- •6.7. Фотоэлектрический эффект. Эффект Комптона
- •6.7.1. Внешний фотоэффект
- •6.7.2. Внутренний и вентильный фотоэффект
- •6.7.3. Применение фотоэффекта
- •6.7.4. Фотоны
- •6.7.5. Корпускулярно-волновой дуализм света
- •6.7.6. Эффект Комптона
- •7.1.2. Модель атома Томсона
- •7.1.3. Опыты Резерфорда и ядерная модель атома
- •7.1.4. Постулаты Бора
- •7.1.5. Опыт Франка и Герца
- •7.1.6. Боровская теория атома водорода
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 43
- •7.2. Корпускулярно-волновой дуализм материи
- •7.2.1. Гипотеза де Бройля
- •7.2.2. Экспериментальные подтверждения гипотезы де Бройля
- •7.2.3. Соотношение неопределенностей
- •Контрольные вопросы для самоподготовки студентов:
- •Лекция 44
- •7.3. Волновая функция. Уравнение Шредингера
- •7.3.1. Волновая функция и ее физический смысл
- •7.3.2. Уравнение Шредингера
- •7.3.3. Частица в бесконечно глубокой одномерной потенциальной яме
- •7.4.1.2. Квантовые числа
- •7.4.1.3. Спин электрона
- •7.4.2. Прохождение частицы через потенциальный барьер. Туннельный эффект
- •7.4.3. Распределение электронов в атоме по энергетическим уровням
- •7.4.3.1. Фермионы и бозоны
- •7.4.3.2. Принцип запрета Паули
- •7.4.3.3. Периодическая система элементов д.И.Менделеева
- •Лекция 46
- •7.5. Энергетические спектры атомов
- •7.5.1. Оптические спектры
- •7.5.2. Рентгеновское излучение
- •7.5.2.1. Тормозное рентгеновское излучение
- •7.5.2.2. Характеристическое рентгеновское излучение
- •7.5.3. Вынужденное излучение
- •8.1. 1. Состав и характеристики атомного ядра
- •8.1.2. Энергия связи ядра
- •8.1.3. Природа ядерных сил
- •8.1.4. Модели атомного ядра
- •Лекция 48
- •8.2. Радиоактивность
- •8.2.1. Естественная и искусственная радиоактивность
- •8.2.2. Закон радиоактивного распада
- •8.2.3. Виды радиоактивности Альфа-распад
- •Бета-распад
- •Протонная и двупротонная радиоактивность
- •Спонтанное деление тяжелых ядер
- •- Излучение
- •Дозы излучения
- •8.2.4. Ядерные реакции
- •8.2.5. Деление ядер. Цепные ядерные реакции
- •8.2.6. Термоядерные реакции
- •Лекция 49
- •8.3. Физика элементарных частиц
- •8.3.1. Фундаментальные физические взаимодействия
- •8.3.2. Элементарные частицы как структурный уровень организации материи
- •8.3.3. Характеристики элементарных частиц
- •Лекция 50 Классификация элементарных частиц
- •8.3.4. Классификация элементарных частиц
- •8.3.4.1. Лептоны
- •8.3.4.2. Адроны
- •8.3.5. Кварковая модель адронов
- •8.3.6. Частицы – переносчики взаимодействий
- •8.3.7. Стандартная модель элементарных частиц
- •8.3.8. На пути к единой теории
- •Лекция 51 Современные космологические представления
- •1. Звездная форма бытия космической материи
- •2. Эволюция звезд
- •3. Современные космологические модели Вселенной
- •4. Происхождение и развитие Вселенной
7.3.2. Уравнение Шредингера
Статистическое толкование волн де Бройля и соотношение неопределённостей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции . Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Оно, как и все основные уравнения физики, не выводится, а постулируется. Его правильность подтверждается тем, что все вытекающие из него следствия согласуются с опытными фактами.
Волновая функция является функцией координат и времени и может быть найдена путем решения уравнения Шредингера. Уравнение Шредингера имеет вид
(7.44.9)
где
– масса частицы; −
мнимая единица;
– потенциальная функция частицы в
силовом поле, в котором она движется;
– искомая волновая функция; ∆ – оператор
Лапласа
Уравнение
(7.44.9) справедливо для любой частицы,
движущейся с малой (
<<
) скоростью. Оно дополняется условиями,
накладываемыми на волновую функцию:
1) волновая функция должна быть конечной,
однозначной и непрерывной; 2) её
производные по координатам и времени
должны быть непрерывны; 3) функция
должна быть интегрируема. Уравнение
(7.44.9) является общим уравнением
Шредингера. Его также называют уравнением
Шредингера со временем (или временн
м
уравнением Шредингера).
Из
уравнения (7.44.9) следует, что вид волновой
функции
определяется потенциальной функцией
(потенциальной энергией), т.е. характером
тех сил, которые действуют на частицу.
Для многих физических явлений,
происходящих в микромире, уравнение
(7.44.9) можно упростить, исключив
зависимость Ψ от времени, иными
словами, найти уравнение Шредингера
для стационарных состояний – состояний
с фиксированными значениями энергии.
Это возможно, если силовое поле, в
котором частица движется, стационарно,
т.е. функция
не
зависит явно от времени и имеет смысл
потенциальной энергии. Тогда уравнение
Шредингера примет вид
(7.44.10)
где – полная энергия частицы. Уравнение (7.44.10) называется уравнением Шредингера для стационарных состояний (или уравнением Шредингера без времени). В этом уравнении функция должна быть конечной, однозначной и непрерывной во всём рассматриваемом пространстве.
Для электрона в атоме водорода потенциальная энергия равна
(7.44.11)
С учетом этого уравнение Шредингера для электрона в атоме водорода принимает вид:
(7.44.12)
Для
свободной частицы потенциальная энергия
поэтому для свободной частицы уравнение
Шредингера принимает вид:
(7.44.13)
Малые
колебания атомов около положения
равновесия в кристаллах и молекулах
являются гармоническими. Частица,
совершающая гармонические колебания,
называется гармоническим осциллятором.
Если частица колеблется вдоль направления
оси
потенциальная энергия гармонического
осциллятора
Подставив значение потенциальной
энергии в выражение (7.44.10), получим
уравнение Шредингера для гармонического
осциллятора:
(7.44.14)
Значение уравнения Шредингера заключается, например, в том, что оно даёт соответствующее опыту распределение частиц; из него вытекают правила квантования энергии, совпадающие с энергиями стационарных состояний атома водорода в теории Бора. Правила квантования энергии непосредственно вытекают из уравнения Шредингера и условий, налагаемых на волновую функцию (однозначность, конечность, непрерывность). В теории дифференциальных уравнений доказывается, что уравнения такого вида, как уравнение Шредингера, имеют решения, удовлетворяющие вышеприведенным условиям, лишь для некоторых значений энергии. Эти значения энергии, при которых уравнение Шредингера имеет решение, называются собственными значениями энергии. Волновые функции , удовлетворяющие уравнению Шредингера (решения уравнения), при данных собственных значениях энергии, называются собственными функциями.
Следует отметить, что с помощью волновых функций, найденных из решений уравнения Шредингера, можно описывать квантовые состояния только нерелятивистских частиц, которые движутся со скоростями, много меньшими скорости света в вакууме. Переход к релятивистским скоростям частиц в квантовой механике был впервые осуществлен для электрона П.Дираком в 1928 г. Такой переход потребовал принципиально новых физических идей для описания квантовых состояний релятивистских частиц, результатом применения которых явилось создание релятивистской квантовой механики. В основе этой теории лежит уравнение Дирака, которое обобщает уравнение Шредингера и в настоящее время широко используется в квантовой электродинамике и теории элементарных частиц.
