- •1)) Табличные и графические формы представления данных, их построение и анализ
- •2)) Обработка и анализ нечисловых (категорийных) данных с помощью сводных таблиц
- •4)) Методы группировки данных
- •5)) Методы группировки данных с помощью функции частота
- •7)) Показатели изменения уровней ряда динамики
- •9)) Методы сглаживания динамических рядов
- •10)) Аналитическое выравнивание динамического ряда. Виды трендовых моделей
- •Трендовые модели прогнозирования
- •12)) Автокорреляция уровней ряда. Свойства коэффициентов автокорреляции. Коррелограмма
- •13)) Сезонные колебания. Расчетов индексов сезонности.
- •14)) Построение аддитивных и мультипликативных моделей прогнозирования
- •15)) Доверительные интервалы прогноза. Оценка адекватности и точности моделей
- •17)) Создание файлов данных. Элементы описательной статистики в ппп statistica
- •18)) Представление многомерных данных в пакете statistica Стандартизация данных.
- •19)) Определение и экономическая интерпретация коэффициентов корреляции и детерминация Построение корреляционной матрицы в пакете statistica и её анализ, средствами пакета
- •Коэффициент корреляции Пирсона
- •20)) Многомерный регрессионный анализ в пакете statistica: Определение коэффициентов уравнения регрессии, оценка адекватности уравнения и оценка параметров и остатков
- •21)) Понятие кластерного анализа и области его применения
- •22)) Основные способы определения расстояний между объектами. Методы разбиения на кластеры
- •23))Математические характеристики кластера
- •24))Методика объединения (разбиения) в кластеры по иерархическому агломеративному методу. Дендограмма
- •25))Технология выполнения метода к- средних. Описания графика средних
- •26))Проверка статистической значимости построенных кластеров
- •27)) Дисперсионный анализ результатов метода к – средних
7)) Показатели изменения уровней ряда динамики
Показатели изменения уровней ряда динамики. Анализ скорости развития явления во времени характеризуется с помощью статистических показателей, которые получаются в результате сравнения уровней между собой. К ним относятся: абсолютный прирост, темп роста и прироста, абсолютное значение одного процента прироста
Абсолютный
прирост (
)
рассчитывается как разность между двумя
уровнями ряда. В зависимости от базы
сравнения могут быть цепными или как
базисными.
если к=1, то уровень уi-1
предыдущим для данного ряда, а абсолютные
приросты изменения уровня будут цепными.
Темп роста - относительный показатель, рассчитывается как отношение двух уровней ряда. Интенсивность уровней оценивается отношением отчетного уровня к базисному, и выражается коэффициентом роста и темпом роста. Коэффициент роста показывает во сколько раз данный уровень ряда больше базисного уровня. В качестве базисного уровня в зависимости от цели исследования может приниматься какой-то постоянный для всех уровень, либо для каждого последующего предшествующий ему.
базисный темп
рост или
цепные темпы роста
Темп прироста – относительный показатель, показывающий, на сколько процентов данный уровень больше другого, принимаемого за базу сравнения. Можно рассчитать двояко.
или
Исчисление средних показателей в рядах динамики. Обобщенной характеристикой динамического ряда может служить прежде всего средний уровень ряда У. Она называется средней хронологической. Для разных видов рядов динамики средний уровень рассчитывается неодинаково.
В интервальном ряду абсолютных величин с равными периодами средний уровень рассчитывается как средняя арифметическая простая из уровней ряда. На примере
Аналогично определяется средний уровень и в рядах средних величин. Так неправильно. Несколько по другому рассчитывается средний уровень для моментных рядов. Для моментного ряда, содержащего п уровней с равными промежутками между моментами, средний уровень определяется по формуле
Эта средняя известна в статистике как средняя хронологическая для моментных рядов.
В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней не каждую пару моментов, взвешенных по величине расстояний между датами.
Например. Пусть имеются следующие данные о наличии товарных остатков на складе за 2005г.
Дата учета |
01.01.2005 |
01.03.2005 |
01.06.2005 |
01.11.2005 |
01.01.2006 |
Остатки товаров у. |
123 |
130 |
138 |
150 |
160 |
Тогда средний месячный остаток товаров за 2005г. составит.
Средний абсолютный прирост уровней рассчитывается как средняя арифметическая простая из отдельных цепных приростов
У0-как базисный для расчета приростов с 2002 года, поэтому периодов 5.
Особое значение в анализе рядов динамики придается расчету средних темпов роста. Наиболее часто средний темп роста рассчитывается как средняя геометрическая из цепных темпов роста, рассчитанных в каждый период по отношению к предыдущему.
Или
(1)
Вместе с тем при расчете среднего коэффициента роста порой более важно ориентироваться на достижение обшей суммы уровней, а не только конечного уровня. Например, когда идет речь о динамике таких показателей, как вложение инвестиций, ввод в действие жилой площади, строительство автомобильных дорог, то здесь важно определить средний темп роста, при котором достигается суммарное значение показателя за анализируемый период, а не только конечный уровень. Тогда средний уровень вычисляется по формуле и называется средней параболической
(2)
Полученное значение правой части определяется по таблице, ориентированной на получение суммы уровней за период.
Например, определить средний коэффициент роста ввода в действие жилой площади за 2000-2005 гг
Год |
2000 |
2001 |
2002 |
2003 |
2004 |
2005 |
Введено млн.кв.м |
62,6 |
66,2 |
72,8 |
72,3 |
70,4 |
61,7 |
Сначала рассчитаем средний темп роста по формуле (1)
т.е. ежегодно ввод в действие жилой площади снижается на 0,3%. Здесь расчет среднего годового темпа роста надо выполнять, ориентируясь на общую сумму ввода в действие жилья за весь период, тогда используется формула
при п=5 ищем значение, близкое к полученному нами отношению, это 5,468 и оно соответствует к=1,03 или Т=103%, что означает увеличение ввода в действие жилой площади в указанный период ежегодно в среднем на 3%. Аналогично решается при снижении уровней
Средние темпы прироста рассчитывается на основе средних темпов роста путем вычитания из последних 100%.
Тпр=Тр-100%. В предыдущем примере средний темп рост составляет 103% тогда средний темп прироста = 103%-100%=3%.
Показатели изменения уровней ряда могут быть использованы при выборе аналитической кривой для выравнивания ряда. Например, выравнивание по прямой линии эффективно для рядов уровней, которых первые разности (абсолютные приросты) уровней более или менее постоянны. Парабола 2-го порядка отражает развитие с ускоренным или замедленным изменением уровней ряда., т.е. при этом абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) постоянны.
Если при последовательном расположении t значения уровней меняются в геометрической прогрессии, то такое развитие можно отразить показательной функцией.
8)) Обобщающие характеристики ряда динамики (средние уровней ряда; средние показатели уровней ряда)
Рядами динамики называются ряды расположенных в хронологическом порядке показателей, характеризующих изменение какой-либо величины во времени. Ряды динамики включают два основных элемента: показатели времени - t и соответствующие им показатели величины - Y.
Средние показатели динамики
1. Средний уровень
Характеризует типичную величину показателей
В интервальном динамическом ряду рассчитывается как простое арифметическое среднее
Y_{avg} = \frac{\sum Y_i}{n}
В моментном динамическом ряду с равными промежутками времени между отсчетами как хронологическое среднее
Y_{avg} =\frac {\frac{1}{2}Y_1 + Y_2 + ... + Y_{n-1} + \frac{1}{2}Y_n}{n-1}
2. Средний абсолютный прирост
Обобщающий показатель скорости абсолютного изменения значений динамического ряда
\Delta_{avg}Y = \frac{\Delta Y_b_i}{n-1}
3. Средний темп роста
Обобщающий характеристика темпов роста ряда динамики
T_{avg} = {T_b_i}^{\frac{1}{i-1}} (корень степени i - 1)
4. Средний темп прироста
Отношение тоже что и между темпом роста и темпом прироста
T_{avg}\Delta = T_{avg}-1
Для обобщающей характеристики динамики используются:
1средние уровни ряда;
2средние показатели изменения уровней ряда:
Средний абсолютный прирост;
Средний коэффициент роста;
Средний темп прироста.
Средний уровень ряда даёт обобщённую характеристику показателя за весь период, охватываемый рядом динамики.
Средний уровень в интервальном и моментальном рядах динамики определяется по разному. В интервальном ряду с равными периодами (интервалами) средний уровень рассчитывается по формуле простой средней арифметической. Например, средний уровень добычи нефти, выплавки чугуна и так далее ежегодно (за месяц) за рассматриваемый период. Таким образом, чтобы исчислить среднюю из интервального ряда, нужно сложить члены ряда и разделить полученную сумму на их число. Эта средняя известна в статистике как Средняя характеристическая для моментального ряда. Таким образом, средняя хронологическая из моментального ряда динамики равняется сумме показателей этого ряда (при этом начальный и конечный уровни должны быть взяты в половинном размере), делённой на число показателей без одного.
В случае неравных интервалов времени между фактами (моментами, датами) средний уровень ряда определяется в следующей последовательности: 1) определяется средние за интервалы, ограниченные двумя датами; 2) расчёт из них общей средней; при этом средние за более длительные интервалы должны быть взяты с весами, кратные их длине.
Темпы роста(темпы динамики ТР) – это относительный статистический показатель, определяемый как отношение одного уровня к другому одного и того же и показывающий во сколько раз один уровень больше(меньше) другого.
В зависимости от выбора базы сравнения темпы роста рассчитываются как цепные, когда каждый уровень сопоставляется с уровнем предыдущего периода и как базисные, когда все уровни ряда сопоставляются с уровнем одного какого-то периода, принятого за базу сравнения (как правило, это бывает начальный уровень ряда, но может быть и уровень любого другого периода) Соответственно цепные темпы роста (Трцi) характеризуют интенсивность развития явления в каждом отдельном периоде, а базисное – интенсивности развития за любой отрезок времени (отделяющий данный уровень от базисного). В том и другом случае темпы роста могут быть выражены в виде коэффициентов, если основание отношения принимается за единицу, и в виде процентов, если основание принимается за 100.
Темп прироста (Тп) показывает на сколько процентов изменился сравниваемый уровень с уровнем, за базу сравнения. Этот показатель можно рассчитать: 1) путём вычисления 100% и соответствующего темпа роста или 2) как процентное отношение абсолютного прироста к тому базисному уровню, по сравнению с которым абсолютный прирост рассчитан. Отсюда вывод, что между показателями темпа прироста и темпа роста имеется взаимосвязь и Если уровни ряда динамики уменьшаются (сокращаются), то соответственно показатели темпа прироста со знаком “-” и со знаком “+”, если уровни увеличиваются. Таким образом темп прироста характеризует относительное увеличение или уменьшение уровня явления. Показатель абсолютного значения 1% прироста (А%) определяется как частное от деления абсолютного прироста на темп прироста (за соответствующий период) А%=?y : Тn(%).
Абсолютное значение 1% прироста равняется одной сотой предыдущего уровня. Нетрудно видеть отсюда, что расчёт абсолютного значения 1% прироста имеет смысл только для цепных приростов и темпов прироста. Для базисного прироста накопленные приросты с одним и тем же первоначальным уровнем и, следовательно, для всех приростов будет сокращаться одно и то же значение 1% прироста.
