Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
analiz_dannykh_polny.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
626.69 Кб
Скачать

5)) Методы группировки данных с помощью функции частота

В Excel для построения выборочных функций распределения используется функция «ЧАСТОТА». Данная функция вычисляет частоты появления случайной величины в заданных интервалах значений и выводит их как массив частот. Функция «ЧАСТОТА» находится в категории «Статистические» Аргумент «Массив данных» - это множество данных, для которых вычисляются частоты. Аргумент «Массив интервалов» - это множество интервалов, в которые группируются значения аргумента «массив данных» (Рисунок 6)

Количество элементов (частот) в возвращаемом массиве числа элементов в массиве интервале. Массив интервалов значений должен быть построен до вызова функции ЧАСТОТА

Следуя принципу «лучше один раз увидеть, чем сто раз услышать», для анализа статистических данных часто используют графические изображения, а не таблицы.

Дли повышения наглядности эмпирических распределений, используется их графическое представление. Наиболее распространенными способами графического представления являются гистограмма, полигон частот и полигон накопленных частот (кумулята).  2.3.1. Гистограмма

Гистограмма используется для графического представления распределений непрерывно варьирующих признаков и состоит из примыкающих друг к другу прямоугольников, как показано на рис. 2.1. Основание каждого прямоугольника равно ширине интервала группировки, а высота его такова, что площадьпрямоугольника пропорциональна частоте (или частости) попадания в данный интервал. Если ряд безинтервальный, то ширина всех столбцов выбирается произвольной, но одинаковые. Таким образом, высоты прямоугольников должны быть пропорциональны величинам

                                                                      ,                                                                    (2.6)

где ni — частота i-го интервала группировки; hi — ширина i-го интервала группировки.

На графике гистограммы основание прямоугольников откладывается по оси абсцисс (x), а высота — по оси ординат (у) прямоугольной системы координат.

      Однако в тех случаях, когда ширина всех интервалов группировки одинакова, вид гистограммы не изменится, если по оси ординат откладывать не величины рi, а частоты интервалов ni.    

     

Полигон частот

Другим распространенным способом графического представления является полигон частот.

      Полигон частот образуется ломаной линией, соединяющей точки, соответствующие срединным значениям интервалов группировки и частотам этих интервалов, срединные значения откладываются по оси х, а частоты – по оси у.

      Из сравнения двух рассмотренных способов графического представления эмпирических распределений следует, что для получения полигона частот из построенной гистограммы нужно середины вершин прямоугольников, образующих гистограмму, соединить отрезками прямых. Пример полигона частот представлен

Полигон частот используется для представления распределений как непрерывных, так и дискретных признаков. В случае непрерывного распределения полигон частот является более предпочтительным способом графического представления, чем гистограмма, если график эмпирического распределения описывается плавной зависимостью.

6)) Понятие о временных рядах и их виды. Компоненты временного ряда

Понятие о временных рядах и их виды. Статистическое описание развития экономических процессов во времени осуществляется с помощью временных рядов.

Временным рядом называется ряд наблюдений за значениями некоторого показателя (признака), упорядоченный в хронологической последовательности, т.е. в порядке возрастания переменной t- временного параметра. Отдельные наблюдения временного ряда называются уровнями этого ряда.

Временные ряды делятся на моментные и интервальные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, временные ряды курсов акций, уровни которых фиксируются для конкретных чисел. Примерами моментных временных рядов могут служить также ряды численности населения или стоимости основных фондов, т.к.значения уровней этих рядов определяются ежегодно на одно и то же число.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами рядов этого типа могут служить временные ряды производства продукции в натуральном или стоимостном выражении за месяц, квартал, год и т.д.

Иногда уровни ряда представляют собой не непосредственно наблюдаемые значения, а производные величины: средние или относительные. Такие ряды называются производными. Уровни таких временных рядов получаются с помощью некоторых вычислений на основе непосредственно наблюдаемых показателей. Примерами таких рядов могут служить ряды среднесуточного производства основных видов промышленной продукции или ряды индексов цен.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины - дискретной или непрерывной.

Компоненты временного ряда. В практике прогнозирования принято считать, что значения уровней временных рядов экономических показателей состоят из следующих компонент: тренда, сезонной, циклической и случайной составляющих.

Под трендом понимают изменение, определяющее общее направление развития, основную тенденцию временного ряда. Это систематическая составляющая долговременного действия. Наряду с долговременными тенденциями во временных рядах экономических процессов часто имеют место более или менее регулярные колебания -

периодические составляющие рядов динамики. Если период колебаний не превышает 1 года, то их называют сезонными. Чаще всего причиной их возникновения считаются природно-климатические условия. Иногда причины сезонных колебаний имеют социальный характер, например, увеличение закупок в предпраздничный период, увеличение платежей в конце квартала и т.д. При большем периоде колебания, считают, что во временных рядах имеет место циклическая составляющая. Примерами могут служить демографические, инвестиционные и другие циклы. Если из временного ряда удалить тренд и периодические составляющие, то останется нерегулярная компонента.

Экономисты разделяют факторы, под действием которых формируется нерегулярная компонента, на 2 вида: _ факторы резкого, внезапного действия; _ текущие факторы.

Первый тип факторов (например, стихийные бедствия, эпидемии и др.), как правило, вызывает более значительные отклонения по сравнению со случайными колебаниями- иногда такие отклонения называют катастрофическими колебаниями. Факторы второго типа вызывают случайные колебания, являющиеся результатом действия большого числа побочных причин. Влияние каждого из текущих факторов незначительно, но ощущается их суммарное воздействие.Если временной ряд представляется в виде суммы соответствующих компонент, то полученная модель носит название аддитивной (1.1), если в виде произведения - мультипликативной (1.2) или смешанного типа (1.3):

Yt = ut + st + vt + et (1.1) Yt = ut _ st _ vt _ et (1.2) Yt = ut _ st _ vt + et (1.3),

где yt- уровни временного ряда;

ut -трендовая составляющая;st- сезонная компонента;vt - циклическая компонента;et- случайная компонента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]