Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
analiz_dannykh_polny.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
626.69 Кб
Скачать

19)) Определение и экономическая интерпретация коэффициентов корреляции и детерминация Построение корреляционной матрицы в пакете statistica и её анализ, средствами пакета

Коэффициент корреляции - это корреляцинное отношение, математическая мера корреляции двух случайных величин. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считаетсякорреляционной, хотя и является статистической.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

, где символ   обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Коэффициент детерминации:

Статистический показатель, отражающий объясняющую способность уравнения регрессии и равный отношению суммы квадратов регрессии SSR к общей вариацииSST:

,

где   – уровень ряда,   – смоделированное значение,   – среднее по всем уровням ряда.

Данный показатель является статистической мерой согласия, с помощью которой можно определить, насколько уравнение регрессии соответствует реальным данным.

Коэффициент детерминации изменяется в диапазоне от 0 до 1. Если он равен 0, это означает, что связь между переменными регрессионной модели отсутствует, и вместо нее для оценки значения выходной переменной можно с таким же успехом использовать простое среднее ее наблюдаемых значений. Напротив, если коэффициент детерминации равен 1, это соответствует идеальной модели, когда все точки наблюдений лежат точно на линии регрессии, т.е. сумма квадратов их отклонений равна 0. На практике, если коэффициент детерминации близок к 1, это указывает на то, что модель работает очень хорошо (имеет высокую значимость), а если к 0, то это означает низкую значимость модели, когда входная переменная плохо "объясняет" поведение выходной, т.е. линейная зависимость между ними отсутствует. Очевидно, что такая модель будет иметь низкую эффективность.

Эта процедура предназначена для проведения корреляционного анализа, установления тесноты линейной связи между переменными.  Установим тесноту взаимосвязей между таксационными показателям дубовых древостоев. Фрагмент окна файла данных представлен на рис. 14. Данные представляют собой таксационные показатели древостоев 93 пробных площадей, заложенных в низкоствольных дубравах 4 класса бонитета. По названию переменных понятно какие таксационные показатели они содержат.

В стартовом окне этой процедуры "Pearson Product-Moment Correla-tion" (Корреляция Пирсона) (рис. 15) для расчета квадратной матрицы используется кнопка One variable list (square matrix).

В списке переменных выбирают переменные, между которыми будут рассчитаны парные коэффициенты корреляции Пирсона. После нажатия на кнопку OK или Correlationes на экране появится корреляционная матрица (рис. 16).

Процедура Correlation matrices сразу же дает возможность проверить достоверность рассчитанных коэффициентов корреляции. Значение коэффициента корреляции может быть высоким, но не достоверным, случайным. Чтобы увидеть вероятность нулевой гипотезы (p), гласящей о том что коэффициент корреляции равен 0, нужно в опции Display окна Pearson Product-Moment Correlation (рис. 15) установить переключатель на вторую строку Corr. matrix (display p & N). Но даже если этого не делать и оставить переключатель в первом положении Corr. matrix (highlight p), статистически значимые на 5-% уровне коэффициенты корреляции будут выделены в корреляционной матрице на экране монитора цветом, а при распечатке помечены звездочкой. Третье положение переключателя опции Display - Detail table of results позволяет просмотреть результаты корреляционного анализа в деталях (рис. 17). Флажок опции Casewise deletion of MD устанавливается для исключения из обработки всей строки файла данных, в которой есть хотя бы одно пропущенное значение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]