Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Pr. metodol MIFI_1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.17 Mб
Скачать

В общем виде метод гносеологического подхода к сравнению теорий будет следующим:

  1. Уточнить, какого рода системы представляют сравниваемые теории, т.е. с точностью до каких идеализаций они рассматриваются.

  2. Выяснить существенный аспект сравнения, т.е. установить тот конкретный род систем, по которым теории необходимо сравнивать в целях решения поставленной задачи.

  3. Установить, сравнимы ли теории по выбранному аспекту. И если да, то найти результат этого сравнения. Для пояснения используем уже упоминавшийся по несколько иному поводу пример сравнения ньютоновой и релятивистской механик.

Эти механики являются и семиотическими, и гносеологическими системами. Последнее означает, что они являются языковыми системами, имеющими приложения в объективной действительности. Как языковые системы они представляют и синтаксические, и семантические системы. При этом в качестве семантических систем они являются и математическими и физическими системами, так как имеют и математическую, и физическую интерпретации (семантики).

Задачи, которые требуют сравнения теорий, могут быть самые различные. Допустим, нам надо проверить, соотносится ли релятивистская механика с ньютоновой по принципу соответствия Бора. Согласно условиям применения этого принципа существенно, чтобы обе теории могли быть представлены как семантические системы, имеющие математическую семантику (математические аппараты) в отвлечении от их физической семантики. Соответствие будет иметь место в том случае, когда математический аппарат любого закона релятивистской механики путем логической операции конкретизации можно будет свести к математическому аппарату некоторого закона ньютоновой механики. Но так как операция конкретизации является обратной по отношению к операции обобщения, то можно наличие соответствия показать путем обобщения математического аппарата закона ньютоновой механики в математический аппарат закона релятивистской механики. Этим приемом мы будем пользоваться.

Как математические системы, т.е. по математическим аппаратам, релятивистская и ньютонова механики, во-первых, сравнимы, так как рассматриваются с точностью до одних и тех же (математических) идеализаций, присущих теории действительных чисел. Во-вторых, они соотносятся как частная теория к общей.

Это можно показать, взяв математические аппараты законов ньютоновой механики, обобщив их и получив тем самым математические аппараты законов релятивистской механики. Например, возьмем закон ньютоновой механики , где - сила, - масса, - ускорение. Рассмотрим этот закон с точностью до математической семантики, т.е. отвлечемся от его физической семантики. Тогда получим математический аппарат физического закон , где , , будут переменными для действительных чисел, и только. Сделаем ничего по существу не меняющие преобразования: . Заметим, что 0 есть частное значение переменной , где - переменная для чисел, - число 300000. А теперь сделаем обобщение формулы , поставив вместо 0 переменную . Тогда получим математический аппарат закона релятивистской механики . Результат сравнения законен, так как семантика терминов , , , , в частной и общей формулах одинаковы. После обобщения надо полученной математической формуле придать релятивистскую интерпретацию. В этой интерпретации переменные , , , будут соответственно релятивистскими силой, массой, ускорением, скоростью, существенно отличными от соответствующих ньютоновских величин. Отличными хотя бы тем, что в релятивистской механике эти величины относительны, в то время как в ньютоновой механике они абсолютны. Символ будет уже не просто означать число 300000, а скорость 300000 км/сек. В результате релятивистской интерпретации математическая формула станет законом релятивистской механики.

Пусть теперь перед нами поставлена другая задача: нам требуется сравнить результаты вычислений длины ракеты в полете и решить, какая из теорий более точно позволяет это сделать. Суть задачи говорит о том, что тут сравниваются теории как гносеологические системы, которые требуется сопоставить по адекватности отображения материального свойства иметь длину.

Допустим, длину ракеты измеряли на земле и получили результат 100 м. Но задача состоит в том, чтобы измерить ее в полете, т.е. в процессе динамического движения.

Представим себе, что ракета фотонная и летит со скоростью 270000 км/сек. Ясно, что измерить длину ракеты с Земли можно только при помощи лучей света. Выше мы уже говорили, что ньютонова механика принимает скорость света за бесконечную. Тогда в соответствии с законами преобразования координат в различных системах отсчета будет справедливым, что длина ракеты на Земле /0/и в полете /ℓ/одна и та же, т.е. ℓ = ℓ0. Так как 0 = 100 м, то и =100 м.

О днако релятивистская механика такую идеализацию скорости света не принимает и считает в соответствии с экспериментальными данными, что скорость света в вакууме равна 300000 км/сек. Тогда преобразования координат необходимо производить по законам Лоренца. В этом случае, если длина ракеты на Земле /ℓ0/ была 100 м., то в движении она будет уже не 0, а 0√1- 2/c2 . Если =270000 км/сек, а 0=100 м, то измерение ракеты лучом света в полете покажет уже не 100 м, а только 50 м.

Какая же теория точнее, т.е. по законам какой теории надо измерять с земли длину ракеты в полете? Ответ ясен: если скорость приближается к c, то по законам релятивистской механики, так как скорость луча света не бесконечна, а конечна и реальное измерение не может быть осуществлено лучами света с бесконечной скоростью, ибо таковых в природе не существует. Так что в данном случае сравнение теорий по адекватности измерений, т.е. гносеологическому аспекту, приводит к выводу о большей адекватности релятивистской механики. Поэтому истинность утверждения о длине ракеты в релятивистской механике будет адекватной, а в ньютоновой - асимптотической.

Иного рода задачи могут потребовать сравнения теорий по иным аспектам, например, их сравнения как синтаксических систем или как семантических систем с физической семантикой и т.д. Во всех случаях сравнения теорий требуется метод их гносеологического анализа для выявления идеализаций, с точностью до которых рассматриваются сравниваемые теории. Последнее только и позволяет выделить аспекты сравнения. Вообще говоря, выявление идеализаций требуется для решения очень многих методологических и гносеологических проблем содержательных теорий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]