Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Pr. metodol MIFI_1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.17 Mб
Скачать

Б) Метод квантификации понятий.

Этот метод означает переход от чисто качественных понятий к количественным понятиям, выражающим величины. Метод квантификации широко применим в естественных и технических науках. Например, в физике квантифицированы понятия длины, интервала времени, силы, массы, скорости и т.п. Это дало возможность законам физики стать вычислимыми функциями. Например, по закону , где - сила, - масса, а - ускорение, имея численные значения и , можно вычислить и значение . Без эффективизации своих понятий методом квантификации естественные и технические науки не смогли бы стать так называемыми точными науками. Методы алгоритмизации и квантивизации понятий являются количественными методами.

в) Метод качественного уточнения.

Это метод перехода от интуитивно представимых и плохо распознаваемых определяющих признаков к достаточно четко распознаваемым определяющим признакам. Такой метод эффективизации характерен для гуманитарных наук, которые в силу специфики определяемых объектов не могут воспользоваться ни методом алгоритмизации, ни методом квантификации. Подобным методом в философии можно эффективизировать категории сущности, необходимости, случайности, формы, содержания, отражения, истинности, возможности и некоторые другие. Об эффективизации категорий сущности и необходимости мы уже говорили. Относительно истинности будем говорить в главе III. Сейчас приведем пример эффективизации категорий отражения и формы.

Интуитивное понятие отражения состоит в том, что отражение представляется как создание образа, подобного оригиналу (отражаемому). При этом остается весьма неясным, что такое подобие. Поэтому отношение подобия надо уточнить, чтобы эффективизировать понятие отражения. Однако для этого следует уточнить понятия оригинала и образа.

В этих целях применяется метод системного подхода, которым мы уже пользовались при эффективизации категорий сущности и необходимости.

В общем случае метод системного подхода состоит в представлении объекта в виде системы, используя системные свойства которой можно было бы решить задачу, сформулированную относительно этого объекта.

Для задачи уточнения подобия представим оригинал и образ в виде систем, т.е. множеств объектов с отношениями между ними. Затем определим особое отношение между системами, называемое отношением гомоморфизма (или просто гомоморфизмом). Чтобы его разъяснить, представим себе две системы, имеющие различные сорта элементов и разного рода отношения между этими элементами. Допустим, одной системой является множество билетов на сеанс в кинотеатре с отношением порядка между билетами, установленным с помощью порядковой нумерации. Другой системой будет множество зрителей с отношением соседства занимаемых ими кресел. Теперь допустим, что каждому зрителю можно поставить в однозначное соответствие билет. Обратное не обязательно. Далее допустим, что если зритель имеет соседа, то его билет имеет номер, непосредственно предшествующий или следующий за номером билета соседа. Тогда система зрителей имеет гомоморфное отношение к системе билетов. А теперь используем понятие гомоморфизма для уточнения понятия подобия образа оригиналу, а в итоге и понятия отражения.

Отражением одной системы в другой будет система (образ), гомоморфная другой системе (оригиналу). Чем точнее заданы системы, тем эффективнее будет понятие отражения. В зависимости от специфики отражения надо будет добавлять к общему понятию отражения какие-то специфические условия. Например, чувственное отражение невозможно без физических воздействий материального объекта на органы чувств. Поэтому чувственное отражение надо еще связать с физическими взаимодействиями.

На основе понятия гомоморфизма можно определить понятие изоморфизма и эффективизировать категорию формы. Изоморфизм есть отношение взаимного гомоморфизма систем. Например, система зрителей изоморфна системе билетов тогда, когда первая гомоморфна второй, а вторая – первой. Это значит, что каждому зрителю однозначно сопоставим билет, а каждому билету – зритель, а отношению соседства зрителей однозначно сопоставимо непосредственное предшествование или следование номеров билетов, и наоборот.

Изоморфизм есть уточнение понятия одинаковости по форме, которое можно использовать для эффективизации категории формы: форма есть то общее, что имеется у всех изоморфных систем. Например, у всех кристаллов поваренной соли одинаковая форма, хотя у каждого кристалла свои молекулы и свои молекулярные связи. Но все кристаллы, представляющие молекулярные системы, изоморфны. А форма есть не связи сами по себе, а то общее, что есть у данных систем и вообще у всех систем, изоморфных с кристаллами соли. Обычно это общее, т.е. форма, изображается в виде графа. Граф кристалла поваренной соли является кубом.

В отличие от понятий формы как способа связи содержания, организации содержания21 формой являются не сами связи, а то общее, что есть у этих связей, например, пространственная ориентация (пространственная форма). Поэтому не сами электромагнитные взаимодействия между молекулами поваренной соли образуют форму кристалла, а их пространственная ориентация. Именно такое понимание формы используется науками, и в первую очередь специально изучающими форму разного рода систем (семиотика, логика, математика, кибернетика, физика, и.п.).

К примеру, математика изучает форму любых систем действительности, выделяя ее в так называемом чистом виде и отвлекаясь тем самым от содержания этих систем. Эта форма, выделенная в чистом виде, называется количественными отношениями действительности. Отсюда предметом математики применительно к кристаллу поваренной соли являются только его количественные отношения (форма в чистом виде). Эти отношения описываются графом, называемым кубом. Сами же конкретные электромагнитные связи и молекулы кристалла являются содержанием кристалла, от которого математика отвлекается. Поэтому математика выделяет не "связи содержания" и не "организацию содержания", а только то общее, что есть у этих связей и организации со всеми другими "связями" и "организациями" всех изоморфных систем. Это общие свойства всех такого рода отношений.

Например, существуют самые разнообразные отношения равенства: равенства чисел, фигур, масс, прав и т.д. Но все они имеют общими свойствами свойства рефлексивности, транзитивности и симметричности. Вот они-то и являются количественными отношениями, характеризующими форму системы некоторого рода конкретных объектов с конкретным отношением равенства. Такой системой может быть система натуральных чисел с отношением равенства чисел. Ей может быть система людей с отношением правового равенства и т.д. но форма у всех этих систем будет одна и та же.

Подобное понимание формы может далеко выходить за рамки обыденных представлений о форме. Например, могут иметь одну и ту же форму системы с обыденной точки зрения совершенно не сходные между собой по форме. Например, что может быть с интуитивной точки зрения схожего по форме между системой телевизионных сигналов, передаваемых телестанцией, и системой изображений на экране телевизора? Однако они изоморфны.

Мы столь подробно остановились на разъяснении понятия формы лишь потому, что эта категория наиболее подвержена неверному пониманию. При этом понятие формы трактуется так, что становится не применимым в науках, заинтересованных в научно-практическом применении категории формы. В силу этого философия для своего применения в науке должна пойти дальше интуитивного представления о форме и принять идеализированное эффективно определяемое и отвечающее потребности науки определение категории формы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]